• Title/Summary/Keyword: Ozone Decomposition

Search Result 122, Processing Time 0.024 seconds

Ozone Density Estimation and Stable Supply in the Thin Film Growth

  • Lim, Jung-Kwan;Park, Yong-Pil;Oh, Geum-Gon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2001
  • An ozone condensation system is evaluated from the viewpoint of an ozone supplier for Bi-superconductor thin film growth. An ozone condenser by a selective adsorption on the silica gel surface is constructed. Ozone density is evaluated by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is found to be available to the density evaluation from dilute to highly condensed ozone. The highest ozone density condensed by the adsorption method is evaluated to be 97 mol%.

  • PDF

A Study on the Improvement of Decomposition Efficiency of Organic Substances Using Plasma Process and Catalytic Surface Chemical Reaction (플라즈마 프로세스 및 촉매 표면화학반응에 의한 유기화합물 분해효율 향상에 대한 연구)

  • Han, Sang-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.932-938
    • /
    • 2010
  • This paper proposed the effective treatment method for organic substances using the barrier discharge plasma process and catalytic chemical reaction followed from ozone decomposition. The decomposition by the plasma process of organic substances such as trichloroethylene, methyl alcohol, acetone, and dichloromethane carried out, and ozone is generated effectively at the same time. By passing through catalysts, ozone easily decomposed and further decomposed organic substances. And, 2-dimensional distribution of ozone using the optical measurement method is performed to identify the catalytic surface chemical reaction. In addition, CO is easily oxidized into $CO_2$ by this chemical reaction, which might be induced oxygen atom radicals formed at the surface of catalyst from ozone decomposition.

A Study on the Charateristics for Ozone Decomposition over Recovered Mn from Spent Betteries (폐건전지에서 회수된 Mn을 이용한 오존분해 특성 연구)

  • Kim, Geo Jong;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.161-164
    • /
    • 2013
  • In this study, the application of recovered metals from spent batteries by extraction was investigated for ozone decomposition as a catalyst. Among the recovered metals, Mn contents was the most important factor for ozone decomposition. It was also found that the deactivation rate of the catalyst was dependent on the Zn contents, while K contents and activities were not perfectly correlated for ozone decomposition. In addition, the catalytic activity the $TiO_2$ added catalyst was decreased, due to the reduction of Mn contents. The structural characteristics of maganase oxide was not associated with the catalytic activity for ozone decomposition.

A Study on the Decomposition Rate of Phenol in the Batch Type Ozonation (회분식 오존 공정에서 페놀의 분해 속도에 관한 연구)

  • 안재동;강동수
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.127-132
    • /
    • 1997
  • The characteristics of the ozone treatments of phenol were studied in a laboratory scale wastewater treatment system. The ozone treatment of wastewater was carried out in a batch-type reactor. The initial pH of wastewater(7-10), volumetric flow rate(1-2l/min) and ozone concentration(20~30 mg/l) of aerating gas were considereal as experimental variables in the ozone treatment. Phenol was decomposed easily by the ozone in a batch treatment, where the rate determining step was the COD removal that is decomposition of intermediates formed by the ozonation of phenol. Phenol decomposition and COD removal could be expressed by the first order reaction for the phenol concentration and COD, respectively. Rate constants of phenol decomposition and COD removal increased with the initial pH, volumetric flow rate and ozone concentration of aeration gas. Under the present experimental condition, their relationships could be given by for the phenol decomposition $k'=4.46\times 10^{-9}[pH]_o ^{3.94}[O_3]^{1.42}Q_{O3}^{1.57}$ for the COD removal $k=2.46\times 10^{-10}[pH]_o ^{5.19}[O_3]^{1.15}Q_{O3}^{1.19}$

  • PDF

Characteristics of Oxidation System for Superconductor Thin Film( I ) (초전도 박막 제작을 위한 산화 시스템의 특성( I ))

  • Lim, J.K.;Park, Y.P.;Yang, D.B.;Kim, J.H.;Lee, H.K.;Park, N.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.272-275
    • /
    • 2002
  • An ozone condensation system is evaluated in the viewpoint of an ozone supplier for oxide thin film growth. Ozone is condensed by the adsorption and distillation method. Then their concentrations are analyzed by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is found to be available to the concentration evaluation from dilution to highly condensed ozone. The highest ozone concentration condensed by the adsorption method is evaluated to be 96 mol%. The ozone is supplied for a sufficiently long time to grow oxide thin films.

  • PDF

Evaluation of Ozone Concentration for the Oxide Thin Film Growth

  • Park, No-Bong;Iim, Jung-Kwan;Park, Yong-Pil;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.579-582
    • /
    • 2003
  • Ozone is usually generated from oxygen gas using a silent discharge apparatus and its concentration is less then 10 mol%. Ozone is condensed by the adsorption method, which is widely used for the growth of oxidation thin films such as superconductor. Highly condensed ozone is analyzed by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is most effective in the highly condensed ozone region and its method is superior to Q-mass analyzer for determining ozone concentration because of the simplicity of the method.

  • PDF

Effect of Ultrasonic Irradiation on Ozone Nanobubble Process for Phenol Degradation (페놀 분해를 위한 오존 나노기포 공정에서 초음파 조사의 영향)

  • Lee, Sangbin;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.23-29
    • /
    • 2022
  • In this study, we investigated the ozone nanobubble process in which nanobubble and ultrasonic cavitation were applied simultaneously to improve the dissolution and self-decomposition of ozone. To confirm the organic decomposition efficiency of the process, a 200 mm × 200 mm × 300 mm scale reactor was designed and phenol decomposition experiments were conducted. The use of nanobubble was 2.07 times higher than the conventional ozone aeration in the 60 minutes reaction and effectively improved the dissolution efficiency of ozone. Ultrasonic irradiation increased phenol degradation by 36% with nanobubbles, and dissolved ozone concentration was lowered due to the promotion of ozone self-decomposition. The higher the ultrasonic power was, the higher the phenol degradation efficiency. The decomposition efficiency of phenol was the highest at 132 kHz. The ozone nanobubble process showed better decomposition efficiency at high pH like conventional ozone processes but achieved 100% decomposition of phenol after 60 minutes reaction even at neutral conditions. The effect by pH was less than that of the conventional ozone process because of self-decomposition promotion. To confirm the change in bubble properties by ultrasonic irradiation, a Zetasizer was used to measure the bubbles' size and zeta potential analysis. Ultrasonic irradiation reduced the average size of the bubbles by 11% and strengthened the negative charge of the bubble surface, positively affecting the gas transfer of the ozone nanobubble and the efficiency of the radical production.

Remediation of Diesel-Contaminated Soil by Fenton and Ozone Oxidation Process (펜톤과 오존산화공정을 이용한 디젤오염토양의 복원)

  • Choi, Hee-Chul;Lee, Kwan-Yong;Choi, Sang-Il;Lee, Tae-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.34-39
    • /
    • 2010
  • In this study, the remediation of diesel contaminated soil was attempted with ozone treatment and Fenton reaction. About 10% of initial diesel concentration was removed by the ozone saturated solution. The pseudo-first order decomposition constant of diesel contaminated soil in the presence of 5% of hydrogen peroxide with 1.82, 2.82, 4.82, 6.82, and 11.82% of iron contents was 0.0228, 0.0308, 0.0482, 0.0471, and 0.0592 $min^{-1}$ respectively. The decomposition constant of the diesel was 0.0064 $min^{-1}$ with the addition of ozone saturated solution only. On the addition of ozone saturated solution in the presence of 5% hydrogen peroxide and 5% iron, the decomposition constant of the diesel was 0.0850 $min^{-1}$. These results indicated that the decomposition rate was 190% faster than without the addition of ozone saturated solution. Thus, the application of both ozone and the fenton reaction is promising for the remediation of the diesel contaminated soil.

Analysis of $O_3$ Concentration for Metal Oxide Thin Films Growth (금속 산화물 박막제작을 위한 오존 농도 분석)

  • Lim, Jung-Kwan;Park, Yong-Pil;Jang, Kyung-Uk;Lee, Hee-Kab
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.331-332
    • /
    • 2005
  • Ozone is ambient gas which is useful for the fabrication of metal oxide thin films under conditions of molecular beam epitaxy. Ozone is condensed by the adsorption method and its concentration is analyzed using the thermal decomposition method. The concentration of ozone exceeds 90 mol% and ozone is supplied for a sufficiently long time to grow oxide thin films. The ozone concentration is also evaluated using a quadrupole mass analyzer and the accuracy of this method is compared with the results of the thermal decomposition method.

  • PDF

Characteristics of Oxidation System for Superconductor Thin Film( II ) (초전도 박막 제작을 위한 산화 시스템의 특성( II ))

  • An, I.S.;Park, Y.P.;Lim, J.K.;Jang, K.U.;Lee, H.K.;Kim, G.Y.;Lee, J.U.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.264-267
    • /
    • 2002
  • An ozone condensation system is evaluated from the viewpoint of an ozone supplier for oxide thin film growth. Ozone is condensed by the adsorption method and its concentration is analyzed by three methods; ultraviolet absorption, thermal decomposition and Q-mass analyzing methods. Thermal decomposition method is found to be available to the concentration evaluation from dilution to highly condensed ozone. The highest ozone concentration condensed by the adsorption method is evaluated to be 97 mol%

  • PDF