A Study on the Charateristics for Ozone Decomposition over Recovered Mn from Spent Betteries

폐건전지에서 회수된 Mn을 이용한 오존분해 특성 연구

  • Kim, Geo Jong (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 김거종 (경기대학교 일반대학원 환경에너지시스템공학과) ;
  • 홍성창 (경기대학교 환경에너지시스템공학과)
  • Published : 2013.04.10

Abstract

In this study, the application of recovered metals from spent batteries by extraction was investigated for ozone decomposition as a catalyst. Among the recovered metals, Mn contents was the most important factor for ozone decomposition. It was also found that the deactivation rate of the catalyst was dependent on the Zn contents, while K contents and activities were not perfectly correlated for ozone decomposition. In addition, the catalytic activity the $TiO_2$ added catalyst was decreased, due to the reduction of Mn contents. The structural characteristics of maganase oxide was not associated with the catalytic activity for ozone decomposition.

본 연구에서는, 폐건전지로부터 회수된 특정 성분들을 이용하여 오존분해 촉매로서의 적용성을 평가하였다. 폐건전지에서 축출된 성분 중, Mn의 함량이 오존분해 반응에 주요 인자임을 보였다. 또한, Zn 함량에 따라 deactivation rate와 높은 상관성을 나타냈으며, K 함량은 오존분해 반응과 상관성이 없음을 나타냈다. 그리고 $TiO_2$를 첨가하여 제조한 촉매는 Mn 함량의 감소로 인한 효율 저하를 나타냈으며, Mn 구조상의 특징은 오존분해 반응과 상관성이 없음을 나타냈다.

Keywords

References

  1. Y. S. Park, J. W. Woo, H. K. Shin, H. Y. Cha, and K. Y. Kim, Appl. Chem., 3, 72 (1999).
  2. M. K. Meyer, Proceedings of 12th international Congress for Battery Recycling (2007).
  3. Sumitomo Metals Mining Co., JP 06, 322, 452, 11 (1994).
  4. A. Bernardes, D. C. R. Espinosz, and J. A. S. Tenorion, J. Power Soureces, 124, 586 (2003). https://doi.org/10.1016/S0378-7753(03)00810-3
  5. T. Kanemaru, J. Power Soureces, 7, 253 (1986).
  6. K. Fuchimura, J. Power Soureces, 9, 231 (1988).
  7. Y. Quanwei, Z. Ming, L. Zhimin, Z. Xiaoyu, Z. Lingmin, C. Yaoqiang, and G. Maochu, Chinese J. Catal., 30, 1 (2009). https://doi.org/10.1016/S1872-2067(08)60082-0
  8. B. Dhandapani and S. T. Oyama, Appl. Catal. B, 11, 129 (1997). https://doi.org/10.1016/S0926-3373(96)00044-6
  9. Q. Yu, H. Pan, M. Zhao, Z. Liu, J. Wang, Y. Chen, and M. Gong, J. Hazard. Mater., 172, 631 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.040
  10. C. Heisig, W. Zhang, and S. T. Oyama, Appl. Catal. B, 14, 117 (1997). https://doi.org/10.1016/S0926-3373(97)00017-9
  11. S. M. Shin, J. G. Kang, J. S. Sohn, and D. H. Yang, J. Korean Ind. Eng. Chem., 17, 517 (2006).
  12. M. R. Bankmann, R. Brand, B. H. Enger, and J. Ohmer, Catalysis Today, 14, 225 (1992). https://doi.org/10.1016/0920-5861(92)80025-I