• Title/Summary/Keyword: Oxygen potential

Search Result 1,420, Processing Time 0.031 seconds

Antibacterial Mode of Action of β-Amyrin Promotes Apoptosis-Like Death in Escherichia coli by Producing Reactive Oxygen Species

  • Giyeol Han;Dong Gun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1547-1552
    • /
    • 2022
  • β-Amyrin is a pentacyclic triterpene widely distributed in leaves and stems worldwide. The ability of β-amyrin to induce the production of reactive oxygen species (ROS) in microorganisms suggests its potential as an antimicrobial agent. Thus, this study aimed to elucidate the antibacterial mode of action of β-amyrin. We treated Escherichia coli cells with β-amyrin and found that it triggered ROS accumulation. Excessive stress caused by ROS, particularly hydroxyl radicals, induces glutathione (GSH) dysfunction. GSH protects cells from oxidative and osmotic stresses; thus, its dysfunction leads to membrane depolarization. The resultant change in membrane potential leads to the release of apoptotic proteins, such as caspases. The activated caspases-like protein promotes the cleavage of DNA into single strands, which is a hallmark of apoptosis-like death in bacteria. Apoptotic cells usually undergo events such as DNA fragmentation and phosphatidylserine exposure, differentiating them from necrotic cells, and the cells treated with β-amyrin in this study were positive for annexin V and negative for propidium iodide, indicating apoptosis-like death. In conclusion, our findings suggest that the antibacterial mode of action of β-amyrin involves the induction of ROS, which resulted in apoptosis-like death in E. coli.

Microstructural Properties of the Insoluble Residue in a Simulated Spent Fuel

  • Kim, J.S.;Song, B.C.;Jee, K.Y.;Kim, J.G.;Chun, K.S.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.99-111
    • /
    • 1998
  • Chemical composition of the insoluble residue in a simulated spent PWR fuel(SIMRJEL) were studied. SIMFUELS were prepared by adding calculated amount of FP(fission product) elements with a burnup of 3.6% FIMA(fission per initial metal atom) to uranium in nitrate solution, evaporating the mixed solution to dryness, calcining at 90$0^{\circ}C$ in a stream of 4% H$_2$ + 96% He, and heating the pellet at 140$0^{\circ}C$ under high and low oxygen potentials. Insoluble residue was obtained from the dissolution of the SIMFUEL with HNO$_3$(1 : 1). The chemical composition of the SIMFUELs and the insoluble residues was determined by EPMA(electron probe microanalysis), XPS(X-ray photoelectron spectroscopy) and by XRD (X-ray diffraction) measurements. All of the insoluble residues suspended and precipitated were composed mainly of Mo, Ru with a small amount of Zr, Rh, Pd and Cd. The amount of insoluble residue(<1 wt.%) and a Mo/Ru ratio decreased with increasing oxygen potential. Formation of the zirconium molybdate precipitate, ZrMo$_2$O$_{7}$(OH)$_2$($H_2O$)$_2$, was observed in the residues. The possible role of Mo on the phase formation was discussed in regard to oxygen potential.l.

  • PDF

Comprehensive overview of the role of mitochondrial dysfunction in the pathogenesis of acute kidney ischemia-reperfusion injury: a narrative review

  • Min-Ji Kim;Chang Joo Oh;Chang-Won Hong;Jae-Han Jeon
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.2
    • /
    • pp.61-73
    • /
    • 2024
  • Acute kidney ischemia-reperfusion (IR) injury is a life-threatening condition that predisposes individuals to chronic kidney disease. Since the kidney is one of the most energy-demanding organs in the human body and mitochondria are the powerhouse of cells, mitochondrial dysfunction plays a central role in the pathogenesis of IR-induced acute kidney injury. Mitochondrial dysfunction causes a reduction in adenosine triphosphate production, loss of mitochondrial dynamics (represented by persistent fragmentation), and impaired mitophagy. Furthermore, the pathological accumulation of succinate resulting from fumarate reduction under oxygen deprivation (ischemia) in the reverse flux of the Krebs cycle can eventually lead to a burst of reactive oxygen species driven by reverse electron transfer during the reperfusion phase. Accumulating evidence indicates that improving mitochondrial function, biogenesis, and dynamics, and normalizing metabolic reprogramming within the mitochondria have the potential to preserve kidney function during IR injury and prevent progression to chronic kidney disease. In this review, we summarize recent advances in understanding the detrimental role of metabolic reprogramming and mitochondrial dysfunction in IR injury and explore potential therapeutic strategies for treating kidney IR injury.

UV emission characterization of ZnO thin films depending on the variation of oxygen pressure (분위기 산소압변화에 따른 ZnO박막의 UV발광 특성분석)

  • Bae, Sang-Hyuck;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1523-1525
    • /
    • 1999
  • ZnO is a wide-bandgap II-VI semiconductor and has a variety of potential application. ZnO exhibits good piezoelectric, photoelectric and optic properties, and is good for a electroluminescence device. ZnO films have been deposited at (0001) shappire by PLD technique. Chamber was evacuated by turbomolecular pump to a base pressure of $1{\times}10^{-6}$ Torr Nd:YAG pulsed laser was operated at ${\lambda}=355nm$. The ZnO films were deposited at oxygen pressures from base to 500 mTorr. The substrate temperatures was increased from $200^{\circ}C$ to $700^{\circ}C$. At aleady works, UV emission and green-yellow PL was observed. In this work, ZnO films showed UV, violet, green and yellow emissions. UV emission was enhanced by increasing partial oxygen pressure. We investigated relationship between partial oxygen pressure and UV emission.

  • PDF

The characteristics of Organic Thin Film Transistors with high-k dielectrics

  • Kim, Chang-Su;Kim, Woo-Jin;Jo, Sung-Jin;Baik, Hong-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1288-1290
    • /
    • 2005
  • We report on the structural and electrical properties of amorphous Yttria-stabilized zirconia (YSZ) thin films which are the potential high-k gate dielectric material of organic thin film transistor (OTFT). To investigate the influence of the oxygen flow rate on the structural and electrical properties of the YSZ films, XRD, XPS, J-E, I-V were carried out in this work. Oxygen vacancies are expected to be the most predominant type of defect in metal-oxide dielectrics. The leakage current density decreased mainly because of the reduction of oxygen vacancies with increasing oxygen flow rate.

  • PDF

Photosensitized oxidative damage of human serum albumin by water-soluble dichlorophosphorus(V) tetraphenylporphyrin

  • Ouyang, Dongyan;Hirakawa, Kazutaka
    • Rapid Communication in Photoscience
    • /
    • v.4 no.2
    • /
    • pp.41-44
    • /
    • 2015
  • Biomolecular photo-damaging activity of a water-soluble cationic porphyrin was examined using human serum albumin (HSA), a water-soluble protein as a target biomolecule model by a fluorometry. Dichlorophosphorus(V) tetraphenylporphyrin ($Cl_2P(V)TPP$), was synthesized and used as a photosensitizer. This porphyrin could bind to HSA and cause the photosensitized oxidation of HSA through the singlet oxygen generation and the oxidative photo-induced electron transfer (ET). Near infrared emission spectroscopy demonstrated the photosensitized singlet oxygen generation by this porphyrin. Decrement of the fluorescence lifetime of $Cl_2P(V)TPP$ by HSA supported the ET mechanism. Furthermore, the estimated Gibb's energy indicated that the ET mechanism is possible in the terms of energy. Because oxygen concentration in cancer cell is relatively low, ET mechanism is considered to be advantageous for photosensitizer of photodynamic therapy.

Hydroxylamine Effect on the Determination of Dissolved Oxygen by the Azide-Modified Winkler Method and Polarography (修正된 아자이드 Winkler 법과 폴라로그래피에 의한 溶存酸素의 측정에 관한 하이드록실아민의 영향)

  • Chung, Keun Ho;Ree, Jony Iuir;Kim, Chun Seek
    • Journal of Environmental Health Sciences
    • /
    • v.12 no.2
    • /
    • pp.11-15
    • /
    • 1986
  • Hydroxlamine effect on the determination of dissolved oxygen by the azide-modified Winkder method and polarography has been studied. It was found that hydroxylamine interference on the dissolved oxygen by the azide-modified Winklet method can be eliminated completely by using permanganate. An inexpensive and convenient polarograph device was constructed. Dissolved oxygen in an air-saturated 0.1 F KCl solution undergoes, independent of hydroxylamine concentrations a two-step irreversible reduction at the dropping electrode the $H_2O_2$ produced in the first step is reduced to $H_2$O in the second. Two waves of equal size result, the first with a half-wave potential (E1/2) at about -0.13 V and the second at about -0.91 V (vs. SCE).

  • PDF

Early Summer Dissolved Oxygen Characteristics in Restored Streams in Seoul (서울시 복원하천들의 초여름 용존 산소량 특성 분석)

  • Thoenen, Casey;Choi, Woonsup;Choi, Jinmu
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.3
    • /
    • pp.336-347
    • /
    • 2013
  • This paper presents an evaluation of stream restoration projects in Seoul with a focus on dissolved oxygen. Five test sites across four streams were measured for dissolved oxygen (DO) in late May to early June in 2012 and compared against a set of minimum and maximum thresholds. Only one test site, Hwarang-cheon, showed measurements below 6 mg/l DO. Towards the upper limit, the Hwarangcheon site was the only tested stream which was not at risk of DO supersaturation. The Danghyeon-cheon site had the highest probability of supersaturation, with DO saturation exceeding 130% expected 86.5% of the time. When measured every hour during daytime, DO levels showed diurnal variations, peaking in the afternoon. However, they showed inconsistent results along transects of the streams. Overall, the streams are rich in DO. To maintain the streams in good standing, nutrient loading should be addressed to prevent potential algal bloom induced hypoxic events down the line.

  • PDF

MO Calcultion for the Oxygen Interacting with Ni24(100) Model Surface

  • Kwang-Soon Lee;Hyun-Joo Koo;Yoon Chang Park;Woon-Sun Ahn
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.139-145
    • /
    • 1994
  • The DOS, COOP and O 1s binding energy are calculated for Ni24(100) model surface with oxygen adsorbed on it. The calculation is made with PC/386 using the program obtained by converting EHMACC(VAX version) into PC version. The calculation shows the dissociative adsorption of oxygen molecule, of which the main cause is attributed to the transfer of the $d{\pi}$ and $d{\delta}$ electrons of Ni to the antibonding $1{\pi}_g$ of oxygen molecule. The O ls shift on the adsorption is calculated using the valence potential method, and the results agree fairly good with the experimental values.

Polypyrrole Doped with Sulfonate Derivatives of Metalloporphyrin: Use in Cathodic Reduction of Oxygen in Acidic and Basic Solutions

  • 송위환;백운기
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.183-188
    • /
    • 1998
  • Incorporation of metalloporphyrins into polypyrrole (PPy) film was achieved either by electropolymerization of pyrrole in the presence of metal-tetra(sulfonatophenyl)porphyrin anion (MTSPP, M=Co, Fe) or by metalizing hydrogenated tetra(4-sulfonatophenyl)porphyrin anion (H2TSPP) doped into PPy through ion-exchange. Electrochemical reduction of oxygen on the PPy doped with metallo porphyrin (PPy-MTSPP) was studied in acidic and basic solutions. Oxygen reduction on PPy-MTSPP electrodes appeared to proceed through a 4-electron pathway as well as a 2-electron path. In acidic solutions, the overpotential for O2 reduction on PPy-CoTSPP electrode was smaller than that on gold by about 0.2 V. In basic solutions the overpotential of the PPy-CoTSPP electrode in the activation range was close to those of Au and Pt. The limiting current was close to that of Au. However, polypyrrole doped with cobalt-tetra(sulfonatophenyl)porphyrin anion (PPy-CoTSPP) or with iron-tetra(sulfonatophenyl)porphyrin anion (PPy-FeTSPP) was found to have limited potential windows at high temperatures (above 50 ℃), and hence the electrode could not be held at the oxygen reduction potentials in basic solutions (pH 13) without degradation of the polymer.