
Introduction 

Acute kidney injury (AKI) is a common clinical condition that af-
fects individuals of all ages ranging from children to those who are 
older [1]. Hospitalized patients, especially those in intensive care 
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units, are at higher risk of developing AKI because of conditions 
such as surgeries, infections, and medications that can trigger kid-
ney injury. AKI is associated with high morbidity and mortality 
rates. Severe AKI may progress to end-stage kidney disease or re-
quire kidney replacement therapy [2]. Nevertheless, therapies for 
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AKI remain conservative, highlighting the urgent need for innova-
tive therapeutic approaches. 

Kidney ischemia-reperfusion (IR) injury is a pathological condi-
tion characterized by an initial reduction in blood supply to the 
kidneys and subsequent reoxygenation [3]. Counterintuitively, 
this restoration of blood flow often exacerbates tissue damage, re-
sulting in glomerular and tubular damage, and triggering a severe 
inflammatory response, termed “reperfusion injury.”  

Mitochondria, the powerhouses of cells, are pivotal for adenos-
ine triphosphate (ATP) generation through oxidative phosphory-
lation. In normal mitochondrial physiology, the process encom-
passes not only ATP synthesis via the tricarboxylic acid cycle and 
redox management but also the handling of reactive oxygen spe-
cies (ROS). Additionally, processes such as mitochondrial biogen-
esis and dynamics involving fission, fusion, and distribution are 
crucial for balancing mitochondrial network maintenance, quality 
control, and mitochondrial DNA distribution, which are linked to 
metabolic status [4]. Cellular and organismal health depends on 
this balance, with significant alterations occurring in response to 
stress and disease. The mitochondrial death pathway also plays a 
vital role in maintaining mitochondrial integrity and overall cell 
health [5]. 

Emerging research suggests that mitochondrial dysfunction 
plays a pivotal role in the pathogenesis of kidney IR injury [6]. The 
kidneys are high energy-demanding organs because of their roles 
in filtration, reabsorption, and secretion [7], and they depend 
heavily on mitochondria. Because mitochondria are primary sup-
pliers of cell energy in the form of ATP, their dysfunction can criti-
cally impair the energy supply required for optimal kidney func-
tion [6]. Recent studies have suggested that the aberrant ROS lev-
els implicated in tubular and glomerular injuries are associated 
with mitochondrial dysfunction [8,9]. 

In this review, we highlight insights from studies on the interac-
tion between mitochondria and kidney IR injury, elucidating the 
intricate pathophysiology of the disease and therapeutic strategies. 
Specifically, we discuss the detrimental roles of mitochondrial dy-
namics (fusion-fission), mitophagy, and metabolic rewiring, along 
with the effects of mitochondrial ROS on kidney IR injury. 

Molecular mechanisms of kidney ischemia-
reperfusion injury: mitochondrial 
perspective 

Kidney IR injury occurs when there is a temporary reduction in 
blood supply to the kidneys, followed by restoration. It can be trig-
gered by surgical procedures, trauma, or shock. The interruption 
of blood flow can lead to oxygen and nutrient deprivation, result-

ing in cellular stress. When the blood flow is restored, a burst of 
ROS is triggered, which exacerbates oxidative stress and inflamma-
tion. Eventually, this sequence of events can damage kidney tubu-
lar and endothelial cells, contributing to the development of AKI. 
Under these conditions, significant pathological changes in the mi-
tochondria occur, manifesting as impaired mitochondrial energet-
ics, excessive mitochondrial fragmentation, defective mitophagy, 
and ROS bursts within the mitochondria. 

1. Mitochondrial dysfunction and related cell death 
Several studies have suggested that mitochondrial energetics are 
compromised following an ischemic insult. This is manifested by a 
marked reduction in mitochondrial ATP synthesis and mitochon-
drial membrane potential, and subsequent opening of the mito-
chondrial permeability transition pore (mPTP) [10] (Fig. 1). In-
deed, upon ischemia induction, ATP levels in proximal tubule cells 
decrease to a nadir within a few minutes [11]. Decreased ATP lev-
els can reduce the activity of Na+/K+-ATPase, leading to the accu-
mulation of intracellular Na+. Subsequently, this accumulation trig-
gers Ca2+ influx and accumulation within the mitochondria. Fol-
lowing reperfusion, excessive increases in ROS and Ca2+ levels oc-
cur within the mitochondria, which can induce mitochondrial dys-
function [12,13]. This triggers cytochrome c release through the 
mPTP, initiating a caspase cascade and activating the mitochondri-
al death pathway [14,15]. Cyclophilin D plays a key role in the reg-
ulation of mPTP. Cyclophilin D knock-out (KO) mice are resis-
tant to IR injury [14]. The endoplasmic reticulum (ER) and mito-
chondria share close physical and functional connections. Down-
regulation of X-box binding protein 1 (XBP1), an ER stress re-
sponse protein, protects the kidneys from IR injury. Mechanistical-
ly, 3-hydroxy-3-methylglutaryl-coenzyme A reductase degradation 
1 (HRD1), a protein downstream of XBP1, serves as an E3-ligase 
and facilitates the downregulation of nuclear factor erythroid 2-re-
lated factor 2 (NRF2) through the ubiquitination-degradation 
pathway [16]. XBP1 can also upregulate transcription from the 
NLR family pyrin domain containing 3 (NLRP3) promoter, high-
lighting the role of the XBP1-NLRP3 axis in regulating ER-mito-
chondrial crosstalk in kidneys under IR stress [17]. 

Under oxygen-deprived conditions, the activity of complex V is 
impaired, leading to defects in oxidative phosphorylation. In the IR 
milieu, excessive ROS production is always accompanied by a re-
duction in ATP production in the mitochondria [18,19]. Howev-
er, whether mitochondrial dysfunction is a cause or consequence 
of excessive mitochondrial ROS production remains unclear. In 
conclusion, therapeutic strategies targeting kidney IR injury 
should include the prevention of mitochondria-related cell death. 
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2. Metabolic rewiring and aberrant succinate accumulation 
within the mitochondria 
Previous studies have examined the role of metabolic rewiring in 
kidney IR injury [20-22]. During both the early and late stages of 
reperfusion following ischemia, kidney lactate, and pyruvate levels 
increase, along with an increase in hexokinase activity, indicative of 
enhanced glycolysis. Additionally, tubules in the process of normal 
regeneration and those undergoing atrophy show elevated expres-
sion of glycolytic enzymes and inhibitory phosphorylation of mi-
tochondrial pyruvate dehydrogenase (PDH) [22]. Similarly, the 
progression of IR-induced AKI in human kidney proximal tubular 
cells (HK-2 cells) is characterized by the disruption of amino acid, 
nucleotide, and tricarboxylic acid cycle metabolism, and notably, a 
metabolic shift from fatty acid oxidation (FAO) to glycolytic con-

version [20]. It could be hypothesized that the induction of a gly-
colytic phenotype can serve as an adaptive mechanism following 
tubular injury, as glycolysis can facilitate biomass synthesis crucial 
for cellular repair and proliferation. However, the continued pres-
ence of this phenotype seems to correlate with an elevated level of 
fibrosis [21]. 

Moreover, in proximal tubular cells, hypoxia can induce the re-
versal of complex II (succinate dehydrogenase, SDH) activity, re-
sulting in excessive succinate accumulation [8,9]. Specifically, the 
primary source of succinate is the overflow of fumarate from pu-
rine nucleotides and partially from the reversal of the malate/as-
partate shuttle [8]. Supporting this idea, our group recently discov-
ered that inhibition of the malate/aspartate shuttle by activating 
PDH flux can attenuate succinate accumulation [9]. In the heart, 

Fig. 1. Ischemia induces mitochondrial death pathway and aberrant succinate accumulation. Ischemia significantly impacts mi-
tochondrial functions, notably causing a decline in adenosine triphosphate (ATP) production within kidney proximal tubule cells. 
During reperfusion, a compromised state becomes evident with a significant increase in reactive oxygen species (ROS), which leads 
to mitochondrial dysfunction. This dysfunction causes a decrease in mitochondrial membrane potential (ΔΨm), subsequently trig-
gering the opening of the mitochondrial permeability transition pore (mPTP). A crucial event in this process is the opening of the 
mPTP, which allows the release of cytochrome c and initiates the mitochondrial death pathway. Concurrently, hypoxia induces a 
reversal in the activity of complex II, leading to an excessive accumulation of succinate. Upon reperfusion, the accumulated succi-
nate is rapidly oxidized back by succinate dehydrogenase (SDH). This phenomenon amplifies ROS generation, ultimately culminat-
ing in cellular death. Pyruvate dehydrogenase kinase 4 (PDK4) inhibition enhances pyruvate dehydrogenase complex (PDC) activity. 
Inhibition of the malate/aspartate shuttle (MAS) by activating the pyruvate dehydrogenase (PDH) flux can mitigate this succinate 
accumulation. VDAC, voltage-dependent anion channel; ANT, adenine nucleotide translocase; OMM, outer mitochondrial mem-
brane; IMM, inner mitochondrial membrane; CypD, cyclophilin D; NAD+, oxidized nicotinamide adenine dinucleotide; NADH, reduced 
nicotinamide adenine dinucleotide; TCA, tricarboxylic acid cycle; MPC, mitochondrial pyruvate carrier; PC, pyruvate carboxylase.
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however, succinate accumulates via the canonical Krebs cycle and 
not through reverse SDH activity [23]. Although the reason be-
hind this discrepancy remains elusive (e.g., whether it is organ-spe-
cific), a reduction in either SDH activity or succinate accumulation 
is sufficient to mitigate damage to both the kidney and heart 
[8,9,23]. Consistent with this finding, a recent study revealed that 
fumarate can accept electrons through net reversal of the SDH 
complex [24]. 

Following reperfusion, the accumulated succinate is rapidly re-
oxidized by SDH. Aberrant electron accumulation during the isch-
emia period spills over not only to complexes III, IX, and V but 
also to complex I during the reperfusion period. This phenome-
non, known as reverse electron transport, results in a burst of ROS 
leading to cell death. Although strategies to reduce tubular damage 
are still being established, recent findings suggest that pharmacologi-
cal targeting of SDH by administering dimethyl malonate during 
reperfusion can ameliorate kidney IR injury by blocking rapid oxida-
tion by SDH [25]. Therefore, the optimal timing for SDH inhibition 
to prevent kidney IR injury requires further investigation (Fig. 1). 

3. Excessive mitochondrial fragmentation with defective 
mitophagy 
Mitochondria undergo fusion or division in response to various 
stimuli and stresses [26]. Environmental stresses, including hypox-
ia, can lead to mitochondrial hyperfragmentation. Previous studies 
have shown that mitochondria in proximal tubular cells undergo 
excessive fission [9,27]. Mechanistically, the activation of dy-
namin-related protein 1 (Drp1)-mediated fission and inhibition of 
Bak-mediated fusion can promote cleavage of the outer membrane 
[6,28]. In addition, recent findings have indicated that OMA1 zinc 
metallopeptidase-mediated proteolysis of optic atrophy 1 (OPA1), 
a key inner membrane fusion protein, contributes to inner mem-
brane cleavage during cellular stress [29]. Tubular cell apoptosis 
and AKI can be attenuated by the expression of dominant-negative 
Drp1 or administration of mitochondrial division inhibitor 1 (mdi-
vi-1), a Drp1 inhibitor [6] (Fig. 2A). 

Consistent with these findings, OMA1 deficiency prevented 
ischemic AKI by inhibiting mitochondrial fragmentation [27]. In 
addition, deficiency of Numb, a multifunctional adaptor protein, 
can increase AKI severity by exacerbating mitochondrial fragmen-
tation through phosphorylation of Drp1 at Ser637 [30]. These 
findings are supported by other studies. Under stress conditions 
such as IR injury, Bax-interacting factor 1 (Bif-1, a protein implicat-
ed in apoptosis and mitophagy) can regulate the mitochondrial in-
ner membrane by interacting with prohibitin 2, which forms com-
plexes in the inner membrane with prohibitin 1. This interaction, 
in tandem with prohibitin 1, can disrupt prohibitin complexes, 

leading to the proteolysis and inactivation of OPA1 [31]. A more 
recent study revealed that mitochondrial fragmentation can be in-
duced and inhibited by uncoupling protein 2 (UCP2) gain-of-
function and loss-of-function mutations, respectively, which cor-
related with kidney function in mice subjected to kidney IR injury 
[32]. Latent transforming growth factor-beta binding protein 4 
(LTBP4) is upregulated in the kidney tissues of patients with AKI. 
LTBP4 also regulates transforming growth factor beta activity. 
Knockdown of LTBP4 aggravates injury by accelerating Drp1-de-
pendent mitochondrial division, injury that can be ameliorated by 
mdivi-1 treatment [33]. 

Mitophagy, defined as the clearance of damaged mitochondria 
from cells to maintain a healthy mitochondrial population, is re-
quired to overcome the pathology of kidney IR injury. In particu-
lar, the mitochondrial kinase PTEN-induced kinase 1 (PINK1) 
and the E3-ubiquitin ligase parkin can serve as sensors of mito-
chondrial quality. They are activated following membrane depolar-
ization [34]. PINK1 accumulates on defective mitochondria, and 
its subsequent homodimerization on the outer mitochondrial 
membrane facilitates the recruitment of parkin from the cytosol, 
mediating the clearance of damaged mitochondria [35,36]. Once 
recruited to depolarized mitochondria, parkin-dependent ubiquiti-
nation and proteasomal degradation of outer membrane proteins 
ultimately leads to mitophagy [37] (Fig. 2B). 

Recent studies have shown that activation of mitophagy is essen-
tial for mitigating IR injury. Mitophagy is induced in kidney proxi-
mal tubular cells in both in vitro and in vivo models of ischemic 
AKI [38], and genetic disruption of mitophagy exacerbates the in-
jury [38,39]. Another study demonstrated that Beclin-1 peptide 
pretreatment, which induces both autophagy and mitophagy, can 
protect mice against kidney IR injury [40]. Consistent with this 
idea, a recent study showed that the genetic deletion of pannexin 1 
can prevent kidney tubular cell death, oxidative stress, and mito-
chondrial damage after IR injury. This protection was attributed to 
enhanced mitophagy, which modulates the ATP-P2Y-mammalian 
target of rapamycin signaling pathway [41]. The depletion of 
STE20-like kinase 1 can ameliorate kidney IR injury via AMP-acti-
vated protein kinase (AMPK)-yes-associated protein (YAP)- 
OPA1-dependent activation of mitophagy [42]. Furthermore, in-
hibition of acyl-CoA synthetase family member 2 (ACSF2), which 
is highly expressed in the mitochondria of kidney tubular cells, 
protects against kidney IR injury by activating mitophagy in proxi-
mal tubular cells [43]. Bcl-2 interacting protein 3 (BNIP3), a non-
canonical regulator of mitophagy, has also been implicated in kid-
ney IR injury [44]. Taken together, these findings suggest that the 
regulation of mitophagy is an important therapeutic strategy 
against kidney IR injury. 
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Fig. 2. Mitochondrial dynamics and quality control in kidney IR injury. (A) Mitochondrial fusion-fission: mitochondria undergo 
fusion or division in response to stimuli like hypoxia. Dynamin-related protein 1 (Drp-1) predominantly causes fission. Importantly, 
OMA1-mediated proteolysis of optic atrophy 1 (OPA1) present in two main isoforms, a long form and a short form, plays a dif-
ferential role in these processes. The long form of OPA1 (L-OPA1) promotes mitochondrial fusion, while the short form of OPA1 
(S-OPA1) is more associated with fission. Stress can lead to inner membrane cleavage through OMA1’s action on OPA1, converting 
L-OPA1 to its S-OPA1 counterpart. In kidney injury, such processes are linked to tubular cell apoptosis. Under stressful condi-
tions including IR injury, the endoplasmic reticulum (ER) also undergoes stress. Persistent ER stress causes a large amount of Ca2+ 
release from the ER. This released Ca2+ results in mitochondrial Ca2+ overload through the inositol 1,4,5-trisphosphate receptor 
(IP3R)-voltage-dependent anion channel (VDAC) 1, which forms a bridge between the two organelles at mitochondria-associated 
membranes. Furthermore, under such stressful conditions, Bax-interacting factor 1 (Bif-1) regulates mitochondrial membranes by 
interacting with prohibitin-2. This interaction leads to disruption of prohibitin (PHB) complexes, culminating in the inactivation 
of OPA1, particularly the L-OPA1 isoform, thereby favoring mitochondrial fission. (B) Mitochondrial quality control: mitophagy is 
the process of clearing damaged mitochondria from cells essential in kidney ischemia-reperfusion (IR) injury. PTEN-induced kinase 
1 (PINK1) and parkin can detect mitochondrial quality, leading to removal of damaged mitochondria. Activation of mitophagy 
is critical for reducing IR injury. Disruption of mitophagy worsens the injury. Several proteins and pathways, such as pannexin 1 
(PANX1), mammalian sterile 20-like kinase 1 (MST1), and acyl-CoA synthetase family member 2 (ACSF2), have roles in mitophagy 
and kidney IR injury protection. LTBP4, latent transforming growth factor-beta binding protein 4; MFN, mitofusin; OMM, outer 
mitochondrial membrane; IMM, inner mitochondrial membrane; VAPB, vesicle-associated membrane protein-associated protein B; 
GRP75, glucose-regulated protein 75; PTPIP51, protein tyrosine phosphatase interacting protein 51; ATP, adenosine triphosphate; 
P-mTOR, phosphorylated mammalian target of rapamycin; LC3, microtubule-associated proteins 1A/1B light chain 3; BNIP3, Bcl-2 
interacting protein 3; NIX, NIP3-like protein X; AMPK, AMP-activated protein kinase; YAP, yes-associated protein.

4. Ferroptosis 
Ferroptosis is a relatively newly discovered form of cell death [45]. 
It is an iron-dependent cell death process characterized by the ac-
cumulation of lipid peroxides. This process is distinct from that of 
apoptosis and necrosis [45]. Mitochondria in ferroptotic cells dis-
play pathological changes in morphology such as shrinkage and 
loss of cristae [46]. As suggested by its name, ferroptosis can be 
triggered by various stimuli that lead to iron overload. A pathologi-
cal increase in the cellular iron content can accelerate the Fenton 
reaction, resulting in the production of hydroxyl radicals (•OH) 
and other ROS. Additionally, excess polyunsaturated fatty acids, 

deprivation of glutathione, and reduced function of mitochondrial 
glutathione peroxidase 4 (GPX4), an enzyme that decreases lipid 
peroxides, can induce ferroptosis by increasing lipid ROS (Fig. 3) 
[46]. 

Accumulating evidence has shown that ferroptosis is an import-
ant molecular target for the treatment of kidney IR injury. ROS 
bursts during reperfusion injuries are associated with ferroptosis 
[47]. Researchers have found that the aryl hydrocarbon receptor 
(AhR) is activated during reoxygenation, which leads to ROS pro-
duction, lipid peroxidation, and ferroptotic cell death [47]. The 
same researchers have also shown that AhR-mediated ferroptosis is 
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Fig. 3. Ferroptosis as a central mechanism in kidney ischemia-reperfusion (IR) injury. IR injury can induce lipid peroxidation 
through various pathways, ultimately triggering ferroptosis and leading to acute kidney injury (AKI). Cells have various antioxidant 
enzymes (e.g., Catalase) and coenzymes (e.g., coenzyme Q10 [CoQ10]) to eliminate reactive oxygen species (ROS), thus maintaining 
cellular homeostasis. However, excessive ROS generated due to prolonged injury can eventually lead to lipid peroxidation. IR injury 
causes the release of Fe3+ from ruptured red blood cells, which binds to transferrin (TF) and then associates with TF receptor 1 (TfR1) 
on the cell membrane, forming endosomes. Within the endosome, six-transmembrane epithelial antigen of the prostate 3 (STEAP3) 
converts Fe3++ to Fe2+, which is subsequently released into the cytoplasm through solute carrier family 11 member 2 (SLC11A2), es-
tablishing a labile iron pool. Fe2++ is extruded from the cytoplasm to the extracellular space through cell membrane proteins such 
as SLC40A1, solute carrier family 40 member 1 (SCL40A1) and adaptor protein (poly(rC)-binding protein [PCBP] 2). Extracellular 
Fe2+ is converted back to Fe3+ by ceruloplasmin (CP). It can bind to TF, re-entering the cytoplasm by binding to TfR1, leading to 
endosome formation. Intracellularly, Fe2+ within the labile iron pool is regulated by PCBP1, which can store it as ferritin or convert 
it back to Fe2+ through nuclear receptor coactivator 4 (NCOA4). Additionally, heme oxygenase 1 (HMOX1) contributes to intracel-
lular Fe2+ accumulation. Prolonged IR injury can lead to excessive cytoplasmic Fe2+, promoting the Fenton reaction, converting Fe2+ 
to Fe3+, and generating H2O2 and hydroxyl radicals (•OH) with subsequent lipid peroxidation. Intracellular Fe2+ also accumulates 
within mitochondria through membrane proteins such as solute carrier family 25 member 28 (SLC25A28) and solute carrier family 
25 member 37 (SLC25A37), contributing to heme synthesis and Fe-S cluster formation. Fe2+ within mitochondria can accumulate 
ROS including peroxides (polyunsaturated fatty acid-phospholipid ethanolamine peroxyl radical, PL-OO•). Additionally, excessive 
succinate accumulation during IR injury can lead to ROS generation through the electron transport chain (ETC), causing lipid per-
oxidation both inside and outside the mitochondria. The antioxidant enzyme glutathione peroxidase 4 (GPX4) plays a crucial role 
in reducing lipid peroxidation by using reduced glutathione (GSH) to convert oxidized glutathione (GSSG) while countering ROS. 
GSH is produced intracellularly through the Xc (solute carrier family 7 member 11 [SCL7A11], solute carrier family 3 member 2 
[SCL3A2]) transport system, converting cystine to cysteine. However, reduced GSH during IR injury can compromise GPX4’s activ-
ity. Increased tripartite motif-containing 21 (TRIM21) activity during IR injury can lead to GPX4 ubiquitination and degradation, 
intensifying ROS and lipid peroxidation. Activated inositol-requiring enzyme 1 (IRE1)/jun N-terminal kinase (JNK) pathways during 
IR injury can induce endoplasmic reticulum (ER) stress, promoting ferroptosis. Ferroptosis can exacerbate ER stress. IR-induced 
activation of indoleamine 2,3-dioxygenase 1 (IDO1) can lead to increased conversion of intracellular tryptophan to kynurenine 
metabolites. These metabolites can bind to the aryl hydrocarbon receptor (AhR) in the nucleus, enhancing the expression of cyto-
chrome P450 superfamily of enzymes (CYPs). CYPs can further increase ROS production, contributing to lipid peroxidation. AIFM2, 
apoptosis-inducing factor mitochondria-associated 2; CoQ10H2, reduced coenzyme Q10; NADPH, reduced nicotinamide adenine 
dinucleotide phosphate; NADP+, oxidized nicotinamide adenine dinucleotide phosphate; DMT1, divalent metal transporter 1; PL-
OOH, polyunsaturated fatty acid containing phospholipid hydroperoxides.
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detrimental not only during the reperfusion phase but also during 
the ischemic phase [48]. Tripartite motif-containing protein 21 
(TRIM21) is upregulated in the kidney during IR injury and pro-
motes ferroptosis by ubiquitinating and degrading GPX4. 
TRIM21 inhibition may be a strategy to reduce IR injury [49]. In-
hibition of the ER stress inositol-requiring enzyme 1 (IRE1)/ 
c-Jun N-terminal kinase (JNK) pathway in kidney tubular epitheli-
al cells (TECs) attenuates ferroptosis in AKI. Intriguingly, inhibi-
tion of ferroptosis can also attenuate IRE1/JNK signaling, suggest-
ing a feed-forward loop [50]. Moreover, preserving heme oxygen-
ase 1 (HO-1) expression by inhibiting miR-3587 can attenuate fer-
roptosis and kidney IR injury, suggesting that ferroptosis is a key 
detrimental pathological mechanism of IR injury [51]. 

Therapeutic strategies of kidney ischemia-
reperfusion injury targeting mitochondria 

1. Targeting mitochondrial function including reactive 
oxygen species, biogenesis, and related mitochondrial death 
pathway 
Several studies have suggested that enhancing mitochondrial quan-
tity or function can be beneficial for retarding or preventing IR in-
jury. Approaches such as mitochondrial gene delivery [52], coen-
zyme Q 10 administration [53], and mitochondrial transplantation 
[54,55] have been shown to be able to attenuate kidney injury. 
Supporting these findings, the overexpression of reduced nicotin-
amide adenine dinucleotide (NADH):ubiquinone oxidoreductase 
core subunit V1 (NDUFV1), which encodes a 51-kDa subunit of 
complex I, can attenuate kidney IR injury by improving mitochon-
drial function [56]. 

Recent studies have revealed that a deficiency in oxidized nico-
tinamide adenine dinucleotide (NAD+) can contribute to mito-
chondrial dysfunction, leading to inflammation and kidney disease 
progression. NAD+ supplementation prevents inflammation 
during kidney injury. This protective mechanism is attributed to 
the prevention of mitochondrial RNA leakage into the cytosol and 
inhibition of cytosolic pattern recognition receptor retinoic ac-
id-inducible gene I (RIG-I), both of which are ameliorated by re-
storing NAD+ levels [57]. Moreover, it has been shown that NAD+ 
supplementation can enhance mitochondrial biogenesis in a sirtu-
in (SIRT)-dependent manner and that its precursor, nicotinamide 
riboside, can attenuate IR injury [58]. Mitoquinone, a mitochon-
dria-targeted antioxidant, alleviates IR injury by activating the 
SIRT3-dependent pathway [59]. These findings are supported by 
a recent study showing that SIRT3 deficiency can dampen ear-
ly-stage fibrosis after IR injury [60]. The pregnane X receptor 
(PXR)/aldo-keto reductase family 1, member B7 (AKR1B7) axis 

was recently introduced as a novel therapeutic target [61]. Another 
recent study highlighted that peroxisome proliferator-activated re-
ceptor gamma coactivator 1-alpha (PGC-1α), a master regulator of 
mitochondrial biogenesis, is downregulated in IR injury [62]. That 
study further demonstrated that inhibiting forkhead box protein 
O1 (FOXO1) could restore PGC-1α transcription, implicating the 
FOXO1 inhibitor AS1842856 as a potential therapeutic agent for 
IR injury [62]. 

Certain drugs have demonstrated promising results. Lasmiditan, 
a 5-hydroxytryptamine receptor 1F (5-HT1F) agonist, attenuates 
IR injury by enhancing mitochondrial biogenesis [63]. The im-
portance of 5-HT1F has also been highlighted in a genetic KO 
model [64]. The antidiabetic drug saxagliptin attenuates IR injury 
by activating the NRF2/HO-1 pathway [65]. Eplerenone, a min-
eralocorticoid antagonist available in clinical practice, can reduce 
kidney IR injury by modulating inflammation and the SIRT1/
SIRT3/PGC-1α pathway [66]. Mefunidone, a novel pyridinone 
drug, can regulate the mitochondria-related Bax/Bcl-2/cleaved-
caspase 3 apoptotic pathway, protect mitochondrial electron trans-
port chain complexes III and V levels, and ameliorate kidney func-
tion in both in vivo and in vitro disease models [67]. Additionally, 
acetate, a well-known short-chain fatty acid, reduces cellular ROS 
production and the cells positive for specific indicator for mito-
chondrial superoxide (MitoSox, Thermo Fisher Scientific, 
Waltham, MA, USA) that are indicative of mitochondrial ROS 
production. Acetate also reduced mitochondrial fission and alleviat-
ed IR injury in a murine model [68]. Notably, the ROS-responsive 
chitosan-SS31 prodrug, which has antioxidant properties, alleviated 
ROS levels and improved kidney function in a murine model of IR 
injury [69]. As a member of the vitamin E family, γ-tocotrienol im-
proved mitochondrial function, promoted tubular regeneration, and 
ameliorated kidney functions in a murine IR model [70]. Trepros-
tinil, a U.S. Food and Drug Administration-approved prostacyclin 
(PGI2) analog, can improve mitochondrial function and reduce IR 
injury by a PGC-1α- and SIRT-dependent mechanism [71]. 

The aforementioned mPTP opening resulting from mitochon-
drial dysfunction [10] is also gaining attention as a molecular tar-
get for IR injury. A recent study highlighted that mitochondrial ri-
bosomal protein L7/L12 (MRPL12) can bind to adenosine nucle-
otide translocase 3 (ANT3), thereby stabilizing the mPTP. How-
ever, during AKI, MRPL12 expression is reduced in TECs, leading 
to ANT3 conformational changes and mPTP opening. Overex-
pression of MRPL12 can protect TECs from apoptosis during hy-
poxia/reoxygenation challenge [72]. Similarly, Bax inhibitor-1, 
which conveys anti-apoptotic signals to the mitochondria, is impli-
cated in both IR injury and mitochondrial health [73]. Glutamine 
administration attenuated kidney damage in vivo during AKI and 
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restored TEC viability in vitro by affecting glutamine gamma glu-
tamyltransferase 2 (Tgm2) and apoptosis signal-regulating kinase 
(Ask1) [74]. 

2. Targeting mitochondrial dynamics and mitophagy 
Excessive mitochondrial fragmentation has been observed in kid-
ney IR injury [6,9]. There is growing interest in whether strategies 
to reverse mitochondrial fragmentation can mitigate kidney injury. 
Recently, it was revealed that the catalytic subunit of DNA-depen-
dent protein kinase (DNA-PKcs), known for its functional rela-
tionship with cancer and aging, can directly phosphorylate mito-
chondrial fission 1 protein (Fis1) to induce mitochondrial fission 
and fragmentation in TECs upon IR. The authors showed that 
knock-in mice expressing a nonphosphorylatable mutant exhibited 
improved kidney function, improved histological features, and re-
duced mitochondrial fragmentation upon AKI induction [75]. 
Furthermore, SIRT3 promotes mitofusin 2 ubiquitination and 
degradation, thus suppressing IR-induced AKI [76]. Empaglifloz-
in, an inhibitor of sodium-glucose cotransporter 2, enhanced mito-
chondrial fusion by promoting the AMPK-OPA1 pathway in an IR 
model [77]. Emodin (1,3,8-trihydroxy-6-methylanthraquinone), 
an anthraquinone derivative, demonstrated protective effects in 
IR-injured mice by suppressing calcium/calmodulin-dependent 
protein kinase II (CAMKII)/Drp1-mediated mitochondrial fis-
sion [78]. Additionally, SIRT3 has been found to alleviate kidney 
IR injury by enhancing mitochondrial fusion and activating the 
OPA1 signaling pathway [79]. 

Regarding mitophagy, overexpression of BNIP3 is sufficient to 
overcome kidney IR injury [44,80]. Mesenchymal stem cell-de-
rived extracellular vesicles containing miR-223-3p can activate mi-
tophagy and improve kidney IR injury by inhibiting NLRP3 [81]. 
Collectively, these findings highlight the potential of mitophagy as 
a viable target for the treatment of IR injury. Further studies are re-
quired to validate the role of small molecules and other com-
pounds that target mitophagy. 

3. Targeting metabolic reprogramming 
Succinate accumulation during ischemia leads to excessive ROS 
generation and has been identified as a critical factor in kidney IR 
injury [82]. Recently, in silico analysis revealed that mitochondrial 
FAO, peroxisomal lipid metabolism, fatty acid metabolism, and 
glycolysis are downregulated, whereas the pentose phosphate path-
way is upregulated in ischemic kidney tissues [83]. However, the 
causal relationship between this metabolic reprogramming and its 
effects requires further investigation. As previously mentioned, 
PDH activation can diminish succinate accumulation, partly 

through the restoration of mitochondrial function and attenuation 
of the malate-aspartate shuttle [9]. Enhanced FAO mediated by 
carnitine palmitoyltransferase 1A (CPT1A) and delivery of hypox-
ic mesenchymal stem cell-derived extracellular vesicles can attenu-
ate IR injury, suggesting that metabolic reprogramming is a possi-
ble treatment for IR injury [84]. Moreover, AKT serine/threonine 
kinase 1 (Akt1) and protein kinase B, the main downstream mole-
cules of the insulin-phosphoinositide 3-kinase (PI3K) signaling 
pathway, are activated during IR injury, dampening tubular apop-
tosis and kidney injury, which can eventually lead to kidney fibrosis 
[85,86]. Given that excessive insulin-PI3K-Akt is indicative of in-
sulin resistance, further studies are needed to examine whether im-
proving metabolic conditions, such as insulin sensitization, could 
ameliorate kidney IR injury. 

4. Targeting ferroptosis and inflammation 
A recent review provided a comprehensive overview of the role of 
ferroptosis in kidney IR injury after kidney transplantation [87]. 
Hence, this section briefly discusses recent therapeutic approaches 
targeting ferroptosis. Visomitin, a novel mitochondria-targeting 
antioxidant, can mitigate mitochondrial ROS production, resulting 
in decreased levels of lipid peroxidation and ferroptosis, thereby 
protecting against ischemia- or nephrotoxicity-induced AKI [88]. 
Irisin, an exercise-induced hormone known to improve mitochon-
drial function and reduce ROS production [89], has been shown 
to protect against IR injury by upregulating GPX4 in vivo. Impor-
tantly, the protective effect of irisin was abrogated by the inhibition 
of GPX4 [90]. This is supported by an important observation that 
the ferroptosis suppressor liproxstatin-1 can reduce kidney IR inju-
ry and decrease the mortality rate in Gpx4-deficient mice [91]. 

Another facet of the mitochondrial contribution to the patho-
genesis of IR injury is its relationship with inflammation [92]. 
Pathogen-associated molecular patterns and damage-associated 
molecular patterns are important inducers of NLRP3 inflam-
masome formation in immune cells. Because mitochondrial ROS 
are among the most important inducers of the NLRP3 inflam-
masome [92], targeting this process is crucial for addressing IR in-
jury [93]. Remdesivir, a well-known antiviral agent approved for 
treating coronavirus disease 2019, has been shown to alleviate AKI 
through NLRP3 inflammasome inhibition [94]. Similarly, the dopa-
mine D1 receptor agonist A68930 can attenuate AKI by inhibiting 
NLRP3 inflammasome activation [95]. Further research is warrant-
ed to understand this novel compound, which targets inflammatory 
immune cells in addition to macrophages and monocytes, and to de-
velop novel compounds targeting the NLRP3 inflammasome. 
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Conclusion 

This review is a comprehensive overview of the interplay between 
the mitochondria and acute kidney IR injury and provides import-
ant insights gleaned from previous studies. Several key points have 
emerged. 

During acute kidney ischemia, the mitochondria exhibit re-
duced ATP production and aberrant mitochondrial dynamics, 
leading to energy depletion, which can adversely affect the survival 
and function of kidney cells. During the reperfusion period, succi-
nate accumulated during ischemia is rapidly oxidized, releasing 
electrons toward electron complex I in a process known as reverse 
electron transport. This abnormal phenomenon results in a ROS 
burst, triggering the mitochondrial death pathway. Various strate-
gies have been explored to protect the mitochondria, including the 
use of antioxidants, mitochondria-specific drugs, and interventions 
to improve mitochondrial metabolism and reduce succinate accu-
mulation. 

Furthermore, mitochondrial damage can trigger inflammatory 
responses, exacerbating AKI severity. Additionally, mitochondrial 
dysfunction and the depletion of mitochondrial GPX4 accompany 
ferroptosis, which occurs during IR injury. Thus, mitochondria 
also play crucial roles in the regulation of cell death and injury-re-
lated inflammation. 

In conclusion, the role of mitochondria in acute kidney IR injury 
raises several unresolved questions. Therefore, further studies are 
warranted. The development of novel strategies to effectively safe-
guard mitochondria and prevent or treat AKI is of paramount im-
portance. Such investigations hold promise for pioneering new di-
rections for the prevention and treatment of acute kidney IR injury. 
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