• Title/Summary/Keyword: Oxide reliability

Search Result 269, Processing Time 0.019 seconds

A Study on Switching Characteristics of 1,200V Trench Gate Field stop IGBT Process Variables (1,200V 급 Trench Gate Field stop IGBT 공정변수에 따른 스위칭 특성 연구)

  • Jo, Chang Hyeon;Kim, Dea Hee;Ahn, Byoung Sup;Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.350-355
    • /
    • 2021
  • IGBT is a power semiconductor device that contains both MOSFET and BJT structures, and it has fast switching speed of MOSFET, high breakdown voltage and high current of BJT characteristics. IGBT is a device that targets the requirements of an ideal power semiconductor device with high breakdown voltage, low VCE-SAT, fast switching speed and high reliability. In this paper, we analyzed Gate oxide thickness, Trench Gate Width, and P+Emitter width, which are the top process parameters of 1,200V Trench Gate Field Stop IGBT, and suggested the optimized top process parameters. Using the Synopsys T-CAD Simulator, we designed IGBT devices with electrical characteristics that has breakdown voltage of 1,470 V, VCE-SAT 2.17 V, Eon 0.361 mJ and Eoff 1.152 mJ.

Thermoelectric Properties of ZnkIn2O3+k(k=1∼9) Homologous Oxides (Homologous 산화물 ZnkIn2O3+k(k=1∼9)의 열전 특성)

  • Nam, Yun-Sun;Choi, Joung-Kyu;Hong, Jeong-Oh;Lee, Young-Ho;Lee, Myung-Hyun;Seo, Won-Seon
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.543-549
    • /
    • 2003
  • In order to investigate the thermoelectric properties of $Zn_{k}$ $In_2$$O_{ 3+k}$ homologous compounds, the samples of $Zn_{k}$ /$In_2$$O_{3+k}$ / (k = integer between 1 and 9) were prepared by calcining the mixed powders of ZnO and $In_2$$O_3$fellowed by sintering at 1823 K for 2 hours in air, and their electrical conductivities and Seebeck coefficients were measured as a function of temperature in the range of 500 K to 1150 K. X-ray diffraction analysis of the sintered samples clarified that single-phase specimens were obtained for $Zn_{k} /$In_2$$O_{3+k}$ with k = 3, 4, 5, 7, 8, 9. Electrical conductivity of the $Zn_{k}$ $In_2$$O_{3+k}$ / decreased with increasing temperature, and decreased with increasing k for k $\geq$ 3. The Seebeck coefficient was negative at all the temperatures for all compositions, confirming that $Zn_{k}$ $In_2$$O_{3+k}$ / is an n-type semiconductor. Absolute values of the Seebeck coefficient increased linearly with increasing temperature and increased with increasing k for k $\geq$ 3. The temperature dependence of the Seebeck coefficient indicated that Z $n_{k}$I $n_2$ $O_{3+k}$ could be treated as an extrinsic degenerate semiconductor. Figure-of-merits of Z $n_{k}$I $n_2$ $O_{3+k}$ were evaluated from the measured electrical conductivity and Seebeck coefficient, and the reported thermal conductivity. Z $n_{7}$ I $n_2$ $O_{10}$ has the largest figure-of-merit over all the temperatures, and its highest value was $1.5{\times}$10$^{-4}$ $K^{-1}$ at 1145 K.5 K.

Electrical Characterization of Ultrathin $SiO_2$ Films Grown by Thermal Oxidation in $N_2O$ Ambient ($N_2O$ 분위기에서 열산화법으로 성장시킨 $SiO_2$초박막의 전기적 특성)

  • Gang, Seok-Bong;Kim, Seon-U;Byeon, Jeong-Su;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 1994
  • The ultrathin oxide films less than 100$\AA$ were grown by thermal oxidation in $N_2O$ ambient to improve the controllability of thickness, thickness uniformity, process reproducibility and their electrical properties. Oxidation rate was reduced significantly at very thin region due to the formation of oxynitride layer in $N_2O$ ambient and moreover nitridation of the oxide layer was simultaneously accompanied during growth. The nitrogen incorporation in the grown oxide layer was characterized with the wet chemical etch-rate and ESCA analysis of the grown oxide layer. All the oxides thin films grown in $N_2O$, pure and dilute $O_2$ ambients show Fowler-Nordheim electrical conduction. The electrical characteristics of thin oxide films grown in $N_2O$ such as leakage current, electrical breakdown, interface trap density generation due to the injected electron and reliability were better than those in pure or dilute ambient. These improved properties can be explained by the fact that the weak Si-0 bond is reduced by stress relaxation during oxidation and replacement by strong Si-N bond, and thus the trap sites are reduced.

  • PDF

Annealing Effects on $Q_{BD}$ of Ultra-Thin Gate Oxide Grown on Nitrogen Implanted Silicon (열처리 효과가 질소이온주입후에 성장시킨 산화막의 $Q_{BD}$ 특성에 미치는 영향)

  • Nam, In-Ho;Hong, Seong-In;Sim, Jae-Seong;Park, Byeong-Guk;Lee, Jong-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.3
    • /
    • pp.6-13
    • /
    • 2000
  • Ultra-thin gate oxide was grown on nitrogen implanted silicon substrates. For nitrogen implantation, the energy was fixed at 25keV, but the dose was split into 5.0$\times$10$^{13}$ /c $m^{2}$ and 1.0$\times$10$^{14}$ /c $m^{2}$. The grown gate oxide thickness were 2nm, 3nm and 4nm. The oxidation time to grow 3nm was increased by 20% and 50% for the implanted wafers of 5.0$\times$10$^{13}$ /c $m^{2}$ and 1.0$\times$10$^{14}$ /c $m^{2}$ doses, respectively, when it was compared with control wafers which were not implanted by nitrogen. The value of charge-to-breakdown ( $Q_{BD}$ ) is decreased with increasing nitrogen doses. If an annealing process( $N_{2}$, 85$0^{\circ}C$, 60min.) is peformed after nitrogen implantation, $Q_{BD}$ is increased. It is indicated that nitrogen implantation damage affect gate oxide reliability and the damage can be removed by post-implantation annealing process.

  • PDF

Analysis of Sintered Density for Uranium Oxide Pellet Using Spectrophotometer (분광기를 이용한 우라늄산화물(UOX) 소결체의 밀도 분석)

  • Lee, Byung Kuk;Yang, Seung Chul;Kwak, Dong Yong;Cho, Hyun Kwang;Lee, Jun Ho;Bae, Young Moon;Rhee, Young Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.345-350
    • /
    • 2017
  • The sintered density of uranium oxide pellets for pressurized water reactors is generally analyzed with pellet's samples completed with the sintering process. In this paper, the sintered density was analyzed by the newly developed method measuring the chromatography of ammonium diuranate, a precursor of uranium oxide, by a spectrophotometer (CM-5, Konica Minolta) before completing the sintering process. As a result of the sintered density analysis based on the brightness, color coordinate values (L, a, b) obtained from five ammonium diuranate samples by a spectrophotometer and the trend line of sintered density analyzed by a previous method, the sintered density with respect to the L value was observed with 0.9967 of the decision factor $R^2$. In case of a value, $R^2$ value was 0.9534 indicating lower reliability than that of the L value. However, b value with $R^2$ value of 0.4349 showed a very low correlation.

Effects of Graphene Oxide Addition on the Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Graphene Oxide 첨가에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 Electromigration 특성 분석)

  • Son, Kirak;Kim, Gahui;Ko, Yong-Ho;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.81-88
    • /
    • 2019
  • In this study, the effects of graphene oxide (GO) addition on electromigration (EM) lifetime of Sn-3.0Ag-0.5Cu Pb-free solder joint between a ball grid array (BGA) package and printed circuit board (PCB) were investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of package side finished with electroplated Ni/Au, while $Cu_6Sn_5$ IMC was formed at the interface of OSP-treated PCB side. Mean time to failure of solder joint without GO solder joint under $130^{\circ}C$ with a current density of $1.0{\times}10^3A/cm^2$ was 189.9 hrs and that with GO was 367.1 hrs. EM open failure was occurred at the interface of PCB side with smaller pad diameter than that of package side due to Cu consumption by electrons flow. Meanwhile, we observed that the added GO was distributed at the interface between $Cu_6Sn_5$ IMC and solder. Therefore, we assumed that EM reliability of solder joint with GO was superior to that of without GO by suppressing the Cu diffusion at current crowding regions.

Reflective Thermochromic Display on Polyethylene Naphthalate Film

  • Heo, Kyong Chan;Son, Phil Kook;Sohn, Youngku;Yi, Jonghoon;Kwon, Jin Hyuk;Gwag, Jin Seog
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.168-171
    • /
    • 2013
  • A reflective flexible display was fabricated by placing a thermochromic pigment on a polyethylene naphthalate (PEN) substrate coated with an indium tin oxide (ITO) film, and its thermo-optical characteristics were investigated. The reflective thermochromic display showed good image quality with a reflectance of approximately 65%. As a flexible display, the display showed reliability without damage to the image even after the display was bent strongly. The reflective display cell exhibits continuously the gray level according to the temperature controlled by applied voltage. This low cost display is expected be used in outdoor poster applications where information needs to be presented clearly.

Characterization of Ultra Low-k SiOC(H) Film Deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD)

  • Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.69-72
    • /
    • 2012
  • In this study, deposition of low-dielectric constant SiOC(H) films by conventional plasma-enhanced chemical vapor deposition (PECVD) were investigated through various characterization techniques. The results show that, with an increase in the plasma power density, the relative dielectric constant (k) of the deposited films decreases whereas the refractive index increases. This is mainly due to the incorporation of organic molecules with $CH_3$ group into the Si-O-Si cage structure. It is as confirmed by FT-IR measurements in which the absorption peak at 1,129 $cm^{-1}$ corresponding to Si-O-Si cage structure increases with power plasma density. Electrical characterization reveals that even after fast thermal annealing process, the leakage current density of the deposited films is in the order of $10^{-11}$ A/cm at 1.5 MV/cm. The reliability of the SiOC(H) film is also further characterized by using BTS test.

Fabrication of multi-layered electrostatic lens by mixed micromachining technology (혼합 마이크로머시닝기술을 이용한 다층전극구조의 정전렌즈 제작)

  • 이영재;전국진
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.9
    • /
    • pp.48-53
    • /
    • 1998
  • We have fabricated electrostatic lens with novel structure by mixing surface- and bulk-micromachining technology. Polysilicon was used for both the structure and sacrificial layer, and the structure layer was passivated with thermal oxide in order not to be attacked during the silicon wet etching. Compared with conventional electrostatic lens used in microcolumn, this device has the advantages in ; 1) hole alignment, throughput, reliability, damage of lens, 2) the possibility of arrayed lithography through the integration of microcolumn.

  • PDF

On-State Resistance Instability of Programmed Antifuse Cells during Read Operation

  • Han, Jae Hwan;Lee, Hyunjin;Kim, Wansoo;Yoon, Gyuhan;Choi, Woo Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.503-507
    • /
    • 2014
  • The on-state resistance ($R_{ON}$) instability of standard complementary metal-oxide-semiconductor (CMOS) antifuse cells has been observed for the first time by using acceleration factors: stress current and ambient temperature. If the program current is limited, the $R_{ON}$ increases as time passes during read operation.