Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.8.543

Thermoelectric Properties of ZnkIn2O3+k(k=1∼9) Homologous Oxides  

Nam, Yun-Sun (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology)
Choi, Joung-Kyu (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology)
Hong, Jeong-Oh (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Young-Ho (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Myung-Hyun (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology)
Seo, Won-Seon (Reliability Assessment & Materials Evaluation Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Korean Journal of Materials Research / v.13, no.8, 2003 , pp. 543-549 More about this Journal
Abstract
In order to investigate the thermoelectric properties of $Zn_{k}$ $In_2$$O_{ 3+k}$ homologous compounds, the samples of $Zn_{k}$ /$In_2$$O_{3+k}$ / (k = integer between 1 and 9) were prepared by calcining the mixed powders of ZnO and $In_2$$O_3$fellowed by sintering at 1823 K for 2 hours in air, and their electrical conductivities and Seebeck coefficients were measured as a function of temperature in the range of 500 K to 1150 K. X-ray diffraction analysis of the sintered samples clarified that single-phase specimens were obtained for $Zn_{k} /$In_2$$O_{3+k}$ with k = 3, 4, 5, 7, 8, 9. Electrical conductivity of the $Zn_{k}$ $In_2$$O_{3+k}$ / decreased with increasing temperature, and decreased with increasing k for k $\geq$ 3. The Seebeck coefficient was negative at all the temperatures for all compositions, confirming that $Zn_{k}$ $In_2$$O_{3+k}$ / is an n-type semiconductor. Absolute values of the Seebeck coefficient increased linearly with increasing temperature and increased with increasing k for k $\geq$ 3. The temperature dependence of the Seebeck coefficient indicated that Z $n_{k}$I $n_2$ $O_{3+k}$ could be treated as an extrinsic degenerate semiconductor. Figure-of-merits of Z $n_{k}$I $n_2$ $O_{3+k}$ were evaluated from the measured electrical conductivity and Seebeck coefficient, and the reported thermal conductivity. Z $n_{7}$ I $n_2$ $O_{10}$ has the largest figure-of-merit over all the temperatures, and its highest value was $1.5{\times}$10$^{-4}$ $K^{-1}$ at 1145 K.5 K.
Keywords
${Zn_k}{In_2}{O_{3+k}}$ homologous oxide; electrical conductivity; Seebeck coefficient; thermoelectric material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 /
[ N.Naghavi;C.Marcel;L.Dupont;C.Guery;C.Maugy;J.M.Tarascon ] / Thin Solid Films   DOI   ScienceOn
2 H. Ohta, W.-S. Seo and K. Koumoto, J. Am. Ceram. Soc., 79(8), 2193 (1996)   DOI   ScienceOn
3 T. Moriga, D. D. Edqards, T. O. Mason, G. B. Palmer, K. R. Poeppelmeier, J. L. Schindler and C. R. Kannewurf, J. Am. Ceram. Soc., 81(5), 1310 (1998)   DOI   ScienceOn
4 T. Minami, T. Kakumu and S. Tanaka, J. Vac. Sci. Technol., A14(3), 1704 (1996)   DOI   ScienceOn
5 L. Dupont, C. Maugy, N. Naghavi, C. Guery and J. T. Tarascon, J. Solid State Chem., 158, 119 (2001)   DOI   ScienceOn
6 N. Naghavi, C. Marcel, L. Dupont, A. Rougier, J.-B.Leriche and C. Guery, J. Mater. Chem., 10, 2315 (2000)   DOI   ScienceOn
7 N. Naghavi, L. Dupont, C. Marcel, C. Maugy, B. Laik, A. Rougier, C. Guery and J. M. Tarascon, Electrochimica Acta, 46, 2007 (2001)   DOI   ScienceOn
8 T. Minami, H. Sonohara, T. Kakumu and S. Tanaka, Jpn. J. Appl. Phys., Part 2, 34(8A), L971 (1995)   DOI   ScienceOn
9 J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck Jr. and D. H. Rapkine, Appl. Phys. Lett., 67(15), 2246 (1994)   DOI   ScienceOn
10 N. Cusack and P. Kendall, Proc. Phys. Soc., 72, 898 (1958)   DOI   ScienceOn
11 N. Nakamura, M. Kimizuka and T. Mohri, J. Solid State Chem., 86, 16 (1990)   DOI   ScienceOn
12 H. J. Goldsmid, Thermoelectric Refreigeration, pp. 1-5, Plenum Press (1964)
13 N. Murayama and K. Koumoto, Ceramics, 33(3), 161 (1998) (in Japanese)
14 Y. Masuda, M. Ohta, W.-S. Seo, W. Pitschke and K. Koumoto, J. Solid State Chem., 150, 221 (2000)   DOI   ScienceOn
15 N. Naghavi, C. Marcel, L. Dupont, C. Guery, C. Maugy and J. M. Tarascon, Thin Solid Films, 419, 160 (2002)   DOI   ScienceOn
16 C. Li, Y. Bando, M. Nakamura and N. Kimizuka, J. Electron Microsc., 46, 119 (1997)   DOI   ScienceOn