Browse > Article
http://dx.doi.org/10.14478/ace.2017.1027

Analysis of Sintered Density for Uranium Oxide Pellet Using Spectrophotometer  

Lee, Byung Kuk (Kepco Nuclear Fuel Company)
Yang, Seung Chul (Kepco Nuclear Fuel Company)
Kwak, Dong Yong (Kepco Nuclear Fuel Company)
Cho, Hyun Kwang (Kepco Nuclear Fuel Company)
Lee, Jun Ho (Kepco Nuclear Fuel Company)
Bae, Young Moon (Kepco Nuclear Fuel Company)
Rhee, Young Woo (Department of Energy Science and Technology, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.3, 2017 , pp. 345-350 More about this Journal
Abstract
The sintered density of uranium oxide pellets for pressurized water reactors is generally analyzed with pellet's samples completed with the sintering process. In this paper, the sintered density was analyzed by the newly developed method measuring the chromatography of ammonium diuranate, a precursor of uranium oxide, by a spectrophotometer (CM-5, Konica Minolta) before completing the sintering process. As a result of the sintered density analysis based on the brightness, color coordinate values (L, a, b) obtained from five ammonium diuranate samples by a spectrophotometer and the trend line of sintered density analyzed by a previous method, the sintered density with respect to the L value was observed with 0.9967 of the decision factor $R^2$. In case of a value, $R^2$ value was 0.9534 indicating lower reliability than that of the L value. However, b value with $R^2$ value of 0.4349 showed a very low correlation.
Keywords
sintered density; ammonium diuranate; uranium oxide; spectrophotometer; chromaticity analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. H. Park, Nuclear Chemical Engineering, 1st ed., 397-484, Hans House, Seoul, Republic of Korea (2012).
2 B. K. Kim, I. S. Jang, S. T. Hwang, J. H. Park, E. H. Kim, J. J. Park, and C. S. Choi, Nuclear fuel powder ($UO_2$) manufacturing technology, Chem. Ind. Technol., 9, 375-378 (1991).
3 K. S. Kim, K. W. Song, K. W. Kang, J. H. Kim, and Y. M. Kim, Properties of compacts and pellets made using bimodal-sized $UO_2$ powder, J. Korean Nucl. Soc., 31, 608-617 (1999).
4 P. G. Alfredson, Pilot Plant Development of Processes for the Production of Nuclear Grade Uranium Oxide, AAEC/E245, Australian Atomic Energy Commission, Lucas Heights, Australia (1972).
5 D. H. Jung, S. J. Lee, B. J. Lee, K. L. Jeon, J. N. Lee, J. M. Suh, I. K. Hwang, D. L. Jeong, and Y. H. Jo, Uranium dioxide fuel pellet including Ni oxide and Al oxide and the manufacturing method thereof, KR Patent, 10-1182290 (2012).
6 S. Lowell, J. E. Shields, M. A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface area, Pore Size and Density, 326-337, Springer, Dordrecht, Netherlands (2004).
7 R. M. German, Sintering: From Empirical Observations to Scientific Principles, 102-104, Butterworth-Heinemann, Oxford, UK (2014).
8 S. B. Lee, H. J. Kang, and M. S. Park, Chromaticity analysis of natural dyes extracted from sappan wood, gardenia, and mugwort, Appl. Chem. Eng., 27, 325-329 (2016).   DOI
9 R. M. German, Sintering Theory and Practice, Wiley, NY, USA (1996).
10 A. Kazuhiro and H. Shinichi, Method for measuring sintering degree of uranium dioxide powder, JP Patent, 1989-146181 (1989).
11 D. W. Green and R. H. Perry, Perry's Chemical Engineers' Handbook, 8th ed., 2-27, McGraw Hill, NY, USA (2007).
12 M. J. O'Neil, P. E. Heckelman, C. B. Koch, K. J. Roman, C. M. Kenny, and M. R. D'Arecca, The Merck Index, 14th ed., 1694-1695, Merck & Co., Inc, NJ, USA (2006).
13 J. L. Woolfrey, The Preparation and Calcination of Ammonium Uranates, AAEC/TM476, Australian Atomic Energy Commission, Sydney, Australia (1968).