• Title/Summary/Keyword: Oxide films

Search Result 2,390, Processing Time 0.029 seconds

Formation of Silica Nanowires by Using Silicon Oxide Films: Oxygen Effect (산화 실리콘 막을 이용한 실리카 나노 와이어의 형성 : 산소 효과)

  • Yoon, Jong-Hwan
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1203-1207
    • /
    • 2018
  • In this study, silica nanowires were formed using silicon oxide films with different oxygen contents, and their microstructure and physical properties were compared with those of silica nanowires formed using Si wafers. The silicon oxide films were fabricated by using a plasma-enhanced chemical vapor deposition method. Silica nanowires were formed by thermally annealing silicon oxide films coated with nickel films as a catalyst. In the case of silicon oxide films having an oxygen content of approximately 50 at.% or less, the formation mechanism, microstructure, and physical properties of the nanowires were not substantially different from those of the silicon wafer. In particular, the uniformity of the thickness showed better behavior in the silicon oxide films. These results imply that silicon oxide films can be used as an alternative for fabricating high-quality silica nanowires at low cost.

Formation of nickel oxide thin film and analysis of its electrical properties

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn;Lee, Seon-Gil;Park, Yong-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.52-55
    • /
    • 2005
  • Ni oxide thin films with thermal sensitivity superior to Pt and Ni thin films were formed through annealing treatment after Ni thin films were deposited by a r.f. magnetron sputtering method. Resistivity values of Ni oxide thin films were in the range of $10.5{\mu}{\Omega}cm$ to $2.84{\times}10^{4}{\mu}{\Omega}cm$ according to the degree of Ni oxidation. Also temperature coefficient of resistance(TCR) values of Ni oxide thin films depended on the degree of Ni oxidation from 2,188 ppm/$^{\circ}C$ to 5,630 ppm/$^{\circ}C$ in the temperature range of $0{\sim}150^{\circ}C$. Because of the high linear TCR and resistivity characteristics, Ni oxide thin films exhibit much higher sensitivity to flow and temperature changes than pure Ni thin films and Pt thin films.

A Study on The Fabrication and Electrochemical Characterization of Amorphous Vanadium Oxide Thin Films for Thin Film Micro-Battery (마이크로 박막 전지용 비정질 산화바나듐 박막의 제작 및 전기화학적 특성에 관한 연구)

  • 전은정;신영화;남상철;조원일;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.634-637
    • /
    • 1999
  • The amorphous vanadium oxide as a cathode material is very preferable for fabricating high performance micro-battery. The amorphous vanadium oxide cathode is preferred over the crystalline form because three times more lithium ions can be inserted into the amorphous cathode, thus making a battery that has a higher capacity. The electrochemical properties of sputtered films are strongly dependent on the oxygen partial pressure in the sputtering gas. The effect of different oxygen partial pressure on the electrochemical properties of vanadium oxide thin films formed by r.f. reactive sputtering deposition were investigated. The stoichiometry of the as-deposited films were investigated by Auger electro spectroscopy. X-ray diffraction and atomic force microscopy measurements were carried out to investigate structural properties and surface morphology, respectively. For high oxygen partial pressure(>30% ), the films were polycrystalline V$_2$O$_{5}$ while an amorphous vanadium oxide was obtained at the lower oxygen partial pressure(< 15%). Half-cell tests were conducted to investigate the electrochemical properties of the vanadium oxide film cathode. The cell capacity was about 60 $\mu$ Ah/$\textrm{cm}^2$ m after 200 cycle when oxygen partial pressure was 20%. These results suggested that the capacity of the thin film battery based on vanadium oxide cathode was strongly depends on crystallinity.y.

  • PDF

Epitaxial growth of Tin Oxide thin films deposited by powder sputtering method

  • Baek, Eun-Ha;Kim, So-Jin;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.185.2-185.2
    • /
    • 2015
  • Tin Oxide (SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. In addition, it would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. There have been concentrated on the improvement of optical properties, such as conductivity and transparency, by doping Indium Oxide and Gallium Oxide. Recently, with development of fabrication techniques, high-qulaity SnO2 epitaxial thin films have been studied and received much attention to produce the electronic devices such as sensor and light-emitting diode. In this study, powder sputtering method was employed to deposit epitaxial thin films on sapphire (0001) substrates. A commercial SnO2 powder was sputtered. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using XRD, SEM, AFM, and Raman spectroscopy measurements. The details of physical properties of epitaxial SnO2 thin films will be presented.

  • PDF

Annealing Temperature Dependence on the Physicochemical Properties of Copper Oxide Thin Films

  • Park, J.Y.;Kwon, T.H.;Koh, S.W.;Kang, Y.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1331-1335
    • /
    • 2011
  • We report the results of the characterization of Cu oxide thin films deposited by radio frequency (r.f.) magnetron sputtering at different annealing temperatures. The deposited Cu oxide thin films were investigated by scanning electron microscopy, spectroscopic ellipsometry, X-ray diffraction, atomic force microscopy, Xray photoelectron spectroscopy, and contact angle measurements. The thickness of the films was about 180 nm and the monoclinic CuO phase was detected. The $CuO_2$ and $Cu(OH)_2$ phases were grown as amorphous phase and the ratio of the three phases were independent on the annealing temperature. The surface of Cu oxide films changed from hydrophilic to hydrophobic as the annealing temperature increased. This phenomenon is due to the increase of the surface roughness. The direct optical band gap was also obtained and laid in the range between 2.36 and 3.06 eV.

The Effect of Annealing Treament with Aluminum Oxide as Medium Layer and Platinum Heater (매개층 알루미늄산화막과 백금 발열체의 열처리 효과)

  • 노상수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.314-317
    • /
    • 1997
  • The electrical and physical characteristics of aluminum oxide and Pt thin films on it, deposited by reactive sputtering and DC magnetron sputtering respectively, were analyzed with increasing annealing temperature(400~80$0^{\circ}C$) by four point probe, SEM and XRD. Under $600^{\circ}C$ of annealing temperature, aluminum oxide had the properties of improving Pt adhesion to SiO$_2$and insulation without chemical reaction to Pt thin films and the resistivity of Pt thin films was improved. But these properties of aluminum oxide and Pt thin films on it were degraded over $700^{\circ}C$ of annealing temperature because aluminum oxide was changed into metal aluminum and then reacted to Pt thin films deposited on it. In the analysis of the thermal charateristics of Pt micro-heater fabricated on Si07/si substrate, the temperature of Pt micro-heater is up to 41$0^{\circ}C$ with the power dissipation 1.8 watts.

  • PDF

PREPARATION AND CHARACTERIZATION ON THIN FILMS OF DOPED IRON OXIDE PHOTOSEMICONDUCTIVE ELECTRODES. (얇은막 산화철 광반도성 전극의 제조와 그 특성)

  • Kim, Il-Kwang;Kim, Yon-Geun;Park, Tae-Young;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.104-108
    • /
    • 1993
  • Thin films of MgO-doped and CaO-doped iron oxide were prepared y spray pyrolysis. The films were characterized b X-ray diffraction, scanning electron microscopy and voltammetric techniques. The photoelectrochemical behavior of thin film electrodes depended greatly on the doping level, sintering temperature, substrate temperature and added photosensitizing compounds in solution, showed p-type photoelectrochemical behavior, while the CaO-doped iron oxide thin films prepared at low temperature showed n-type photoelectrochemical behavior. This characteristic change was interpreted in terms of the surface structure change of the thin films and doping effect of metal oxide.

  • PDF

Deposition Behaviors and Electrical Properties of Sb-doped $SnO_2$ Films by Plasma Enhanced Chemical Vapor Deposition (PECVD법에 의해 제조된 Sb-doped $SnO_2$ 박막의 증착거동 및 전기적 특성)

  • 김근수;서지윤;이희영;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.194-200
    • /
    • 2000
  • Sb-doped tin oxide films were deposited on Corning glass 1737 substrate by plasma enhanced chemical vapor deposition(PECVD) technique using a gas mixture of SnCl4/SbCl5/O2/Ar. The deposition behaviors of tin oxide films by PECVD were compared with those by thermal CVD, and effects of deposition temperature, r.f. power and Sb doping on the electrical properties of tin oxide films were investigated. PECVD technique largely increased the deposition rate and smoothed the surface of tin oxide films compared with thermal CVD. Electrical resistivity decreased with doping of Sb due to the increase of carrier concentration. However, large doping of Sb diminished carrier concentration and mobility due to the decrease of crystallinity, which resulted in the increase of electrical resistivity. As the deposition temperature and r.f. power increased, Cl content in the film decreased.

  • PDF

A Study on the Properties of Anodic Oxide Films Formed on Al Alloys in Oxalic Acid (알루미늄 합금 소재의 옥살산 아노다이징 피막 물성 연구)

  • Jeong, Nagyeom;Park, Jihyun
    • Journal of Surface Science and Engineering
    • /
    • v.53 no.5
    • /
    • pp.249-256
    • /
    • 2020
  • As the size of manufacturing equipment for LCD and OLED displays increases, replacement of existing heavy stainless steel components with light metals, such as aluminum alloys, is being more important in semiconducting and display manufacturing industries. To use aluminum alloys for components in semiconducting and display industries, it is important to develop a new anodization method for improved performance of anodic oxide films than conventional anodization method based on sulfuric acid. In this work, optimum applied current density and the best sealing methods for anodic oxide films in 3% oxalic acid were explored. Experimental results showed 2.5 A/dm2 is the best applied current density for improved hardness and dielectric breakdown voltage. Sealing of the anodic oxide films further improved their hardness, dielectric breakdown voltage and resistance to HCl, by which application of anodic oxide films become applicable for components in semiconducting and display industries.

Effect of the Mg Ion Containing Oxide Films on the Biocompatibility of Plasma Electrolytic Oxidized Ti-6Al-4V

  • Lee, Kang;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we prepared magnesium ion containing oxide films formed on the Ti-6Al-4V using plasma electrolytic oxidation (PEO) treatment. Ti-6Al-4V surface was treated using PEO in Mg containing electrolytes at 270V for 5 min. The phase, composition and morphology of the Mg ion containing oxide films were evaluated with X-ray diffraction (XRD), Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and filed-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectrometer (EDS). The biocompatibility of Mg ion containing oxide films was evaluated by immersing in simulated body fluid (SBF). According to surface properties of PEO films, the optimum condition was formed when the applied was 270 V. The PEO films formed in the condition contained the properties of porosity, anatase phase, and near 1.7 Ca(Mg)/P ratio in the oxide film. Our experimental results demonstrate that Mg ion containing oxide promotes bone like apatite nucleation and growth from SBF. The phase and morphologies of bone like apatite were influenced by the Mg ion concentration.