Browse > Article
http://dx.doi.org/10.5695/JKISE.2016.49.2.135

Effect of the Mg Ion Containing Oxide Films on the Biocompatibility of Plasma Electrolytic Oxidized Ti-6Al-4V  

Lee, Kang (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials & Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University)
Choe, Han-Cheol (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials & Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University)
Publication Information
Journal of the Korean institute of surface engineering / v.49, no.2, 2016 , pp. 135-140 More about this Journal
Abstract
In this study, we prepared magnesium ion containing oxide films formed on the Ti-6Al-4V using plasma electrolytic oxidation (PEO) treatment. Ti-6Al-4V surface was treated using PEO in Mg containing electrolytes at 270V for 5 min. The phase, composition and morphology of the Mg ion containing oxide films were evaluated with X-ray diffraction (XRD), Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and filed-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectrometer (EDS). The biocompatibility of Mg ion containing oxide films was evaluated by immersing in simulated body fluid (SBF). According to surface properties of PEO films, the optimum condition was formed when the applied was 270 V. The PEO films formed in the condition contained the properties of porosity, anatase phase, and near 1.7 Ca(Mg)/P ratio in the oxide film. Our experimental results demonstrate that Mg ion containing oxide promotes bone like apatite nucleation and growth from SBF. The phase and morphologies of bone like apatite were influenced by the Mg ion concentration.
Keywords
Biocompatibility; Plasma electrolytic oxidation; Magnesium; Bone like apatite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Albrektsson, P. I. Branemark, H. A. Hansson, J. Lindstrom, Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man, Acta Orthop. Scand, 52 (1981) 155-170.   DOI
2 C. Yao, T. J. Webster, Anodization: a promising nano-modification technique of titanium implants for orthopedic applications, J. Nanosci. Nanotechnol, 6 (2006) 2682-2692.   DOI
3 B. D. Ratner, Titanium in medicine: material science, surface science, engineering, biological responses and medical application, Springer, Berlin, (2001) 10.
4 M. P. Thomsen, A. S. Eriksson, R. Olsson, L. M. Bjursten, P. I. Branemark, L. E. Ericson, Morphological studies on titanium implant inserted in rabbit knee-joint, Adv. Biomater, 7 (1987) 87-92.
5 K. D. Groot, R. G. T. Geesink, C. P. A. T. Klein, P. Serekian, Plasma sprayed coatings of hydroxyapatite, J. Biomed. Mater. Res, (1987) 7, 1375-1381.
6 Y. H. Jeong, W. G. Kim, H. C. Choe, Electrochemical behavior of nano and femtosecond laser textured titanium alloy for implant surface modification, J. Nanosci. Nanotechnol, 11 (2011) 1581-1584.   DOI
7 K. Lee, B. H. Moon, Y. G. Ko, H. C. Choe, Transmission elecrtron microscopy application for the phenomena of hydroxyapatite precipitation in micropore-structured Ti alloy, Surf. Interface Anal, 44 (2012) 1492-1496.   DOI
8 S. Stojadinovic, R. Vasilic, M. Petkovic, B. Kasalica, I. Belca, A. Zekic, L. J. Zekovic, Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate, Appl. Surf. Sci, 265 (2013) 226-233.   DOI
9 S. Durdu, S. Bayramoglu, A. Demirtas, M. Usta, A.H. Ucisik, Characterization of AZ31 Mg Alloy coated by plasma electrolytic oxidation, Vacuum, 88 (2013) 130-133.   DOI
10 A. Polat, M. Makaraci, M. Usta, Influence of sodium silicate concentration on structural and tribological properties of micro arc oxidation coatings on 2017A aluminum alloy substrate, J. Alloys Compd, 504 (2010) 519-526.   DOI
11 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Charaterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy, Surf. Coat. Tech, 130 (2000) 195-206.   DOI
12 K. H. Nan, T. Wu, J.H. Chen, S. Jiang, Y. Huang, G.X. Pei, Strontium doped hydroxyapatite film formed by micro-arc oxidation, Mater. Sci. Eng. C, 29 (2009) 1554-1558.   DOI
13 T. Hanawa, Biofunctionalization of titanium for dental implant, Jpn. Dent. Sci. Rev, 46 (2010) 93-101.   DOI
14 W. H. Song, Y. K. Jun, Y. Han, S. H. Hong, Biomimetic apatite coatings on micro-arc oxidized titania, Biomaterials, 25 (2004) 3341-3349.   DOI
15 S. Durdu, O. F. Deniz, I. Kutbay, M. Usta, Characterization and formation of hydroxyapatite on Ti-6Al-4V coated by plasma electrolytic oxidation, J. Alloys Compd, 551 (2013) 422-429.   DOI
16 M. S. Kim, J. J. Ryu, Y. M. Sung, One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation, Electrochem. Commun, 9 (2007) 1886-1891.   DOI
17 Y. M. Ko, K. Lee, B. H. Kim, Effect of Mg ion on formation of bone-like apatite on the plasma modified titanium surface, Surf. Coat. Tech, 228 (2013) S404-S407.   DOI
18 R. C. Barik, J. A. Wharton, R. J. K. Wood, K. R. Stokes, R. L. Jones, Corrosion, erosion and erosion-corrosion performance of plasma electrolytic oxidation (PEO) deposited $Al_2O_3$ coatings, Surf. Coat. Tech, 199 (2005) 158-167.   DOI
19 K. S. TenHuisen, P. W. Brown, Effects of magnesium on the formation of calcium-deficient hydroxyapatite form $CaHPO_4$.$2H_2O$ and $Ca_4(PO_4)_2O$, J. Biomed. Mater. Res, 36 (1997) 306-314.   DOI
20 M. T. Pham, M. F. Maitz, W. Matz, H. Reuther, E. Richter, G. Steiner, Promoted hydroxyapatite nucleation on titanium ion-implanted with sodium, Thin Solid Films, 379 (2000) 50-56.   DOI
21 M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27, (2006) 1728-1734.   DOI
22 P. N. De Aza, F. Gutian, A. Merlos, E. Lora-Tamayo, S. De Aza, Bioceramic-simulated body fluid interfaces: pH and its influence of hydroxyapatite formation, J. Mater. Sci., Mater. Med, 7 (1996) 399-402.   DOI