DOI QR코드

DOI QR Code

Effect of the Mg Ion Containing Oxide Films on the Biocompatibility of Plasma Electrolytic Oxidized Ti-6Al-4V

  • Lee, Kang (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials & Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University) ;
  • Choe, Han-Cheol (Department of Dental Materials & Research Center of Nano-Interface Activation for Biomaterials & Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University)
  • Received : 2016.02.25
  • Accepted : 2016.04.26
  • Published : 2016.04.30

Abstract

In this study, we prepared magnesium ion containing oxide films formed on the Ti-6Al-4V using plasma electrolytic oxidation (PEO) treatment. Ti-6Al-4V surface was treated using PEO in Mg containing electrolytes at 270V for 5 min. The phase, composition and morphology of the Mg ion containing oxide films were evaluated with X-ray diffraction (XRD), Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and filed-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectrometer (EDS). The biocompatibility of Mg ion containing oxide films was evaluated by immersing in simulated body fluid (SBF). According to surface properties of PEO films, the optimum condition was formed when the applied was 270 V. The PEO films formed in the condition contained the properties of porosity, anatase phase, and near 1.7 Ca(Mg)/P ratio in the oxide film. Our experimental results demonstrate that Mg ion containing oxide promotes bone like apatite nucleation and growth from SBF. The phase and morphologies of bone like apatite were influenced by the Mg ion concentration.

Keywords

References

  1. T. Albrektsson, P. I. Branemark, H. A. Hansson, J. Lindstrom, Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man, Acta Orthop. Scand, 52 (1981) 155-170. https://doi.org/10.3109/17453678108991776
  2. C. Yao, T. J. Webster, Anodization: a promising nano-modification technique of titanium implants for orthopedic applications, J. Nanosci. Nanotechnol, 6 (2006) 2682-2692. https://doi.org/10.1166/jnn.2006.447
  3. B. D. Ratner, Titanium in medicine: material science, surface science, engineering, biological responses and medical application, Springer, Berlin, (2001) 10.
  4. M. P. Thomsen, A. S. Eriksson, R. Olsson, L. M. Bjursten, P. I. Branemark, L. E. Ericson, Morphological studies on titanium implant inserted in rabbit knee-joint, Adv. Biomater, 7 (1987) 87-92.
  5. K. D. Groot, R. G. T. Geesink, C. P. A. T. Klein, P. Serekian, Plasma sprayed coatings of hydroxyapatite, J. Biomed. Mater. Res, (1987) 7, 1375-1381.
  6. Y. H. Jeong, W. G. Kim, H. C. Choe, Electrochemical behavior of nano and femtosecond laser textured titanium alloy for implant surface modification, J. Nanosci. Nanotechnol, 11 (2011) 1581-1584. https://doi.org/10.1166/jnn.2011.3404
  7. K. Lee, B. H. Moon, Y. G. Ko, H. C. Choe, Transmission elecrtron microscopy application for the phenomena of hydroxyapatite precipitation in micropore-structured Ti alloy, Surf. Interface Anal, 44 (2012) 1492-1496. https://doi.org/10.1002/sia.4984
  8. S. Stojadinovic, R. Vasilic, M. Petkovic, B. Kasalica, I. Belca, A. Zekic, L. J. Zekovic, Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate, Appl. Surf. Sci, 265 (2013) 226-233. https://doi.org/10.1016/j.apsusc.2012.10.183
  9. S. Durdu, S. Bayramoglu, A. Demirtas, M. Usta, A.H. Ucisik, Characterization of AZ31 Mg Alloy coated by plasma electrolytic oxidation, Vacuum, 88 (2013) 130-133. https://doi.org/10.1016/j.vacuum.2012.01.009
  10. A. Polat, M. Makaraci, M. Usta, Influence of sodium silicate concentration on structural and tribological properties of micro arc oxidation coatings on 2017A aluminum alloy substrate, J. Alloys Compd, 504 (2010) 519-526. https://doi.org/10.1016/j.jallcom.2010.06.008
  11. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, Charaterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V alloy, Surf. Coat. Tech, 130 (2000) 195-206. https://doi.org/10.1016/S0257-8972(00)00719-2
  12. K. H. Nan, T. Wu, J.H. Chen, S. Jiang, Y. Huang, G.X. Pei, Strontium doped hydroxyapatite film formed by micro-arc oxidation, Mater. Sci. Eng. C, 29 (2009) 1554-1558. https://doi.org/10.1016/j.msec.2008.12.018
  13. W. H. Song, Y. K. Jun, Y. Han, S. H. Hong, Biomimetic apatite coatings on micro-arc oxidized titania, Biomaterials, 25 (2004) 3341-3349. https://doi.org/10.1016/j.biomaterials.2003.09.103
  14. S. Durdu, O. F. Deniz, I. Kutbay, M. Usta, Characterization and formation of hydroxyapatite on Ti-6Al-4V coated by plasma electrolytic oxidation, J. Alloys Compd, 551 (2013) 422-429. https://doi.org/10.1016/j.jallcom.2012.11.024
  15. M. S. Kim, J. J. Ryu, Y. M. Sung, One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation, Electrochem. Commun, 9 (2007) 1886-1891. https://doi.org/10.1016/j.elecom.2007.04.023
  16. T. Hanawa, Biofunctionalization of titanium for dental implant, Jpn. Dent. Sci. Rev, 46 (2010) 93-101. https://doi.org/10.1016/j.jdsr.2009.11.001
  17. Y. M. Ko, K. Lee, B. H. Kim, Effect of Mg ion on formation of bone-like apatite on the plasma modified titanium surface, Surf. Coat. Tech, 228 (2013) S404-S407. https://doi.org/10.1016/j.surfcoat.2012.05.058
  18. R. C. Barik, J. A. Wharton, R. J. K. Wood, K. R. Stokes, R. L. Jones, Corrosion, erosion and erosion-corrosion performance of plasma electrolytic oxidation (PEO) deposited $Al_2O_3$ coatings, Surf. Coat. Tech, 199 (2005) 158-167. https://doi.org/10.1016/j.surfcoat.2004.09.038
  19. K. S. TenHuisen, P. W. Brown, Effects of magnesium on the formation of calcium-deficient hydroxyapatite form $CaHPO_4$.$2H_2O$ and $Ca_4(PO_4)_2O$, J. Biomed. Mater. Res, 36 (1997) 306-314. https://doi.org/10.1002/(SICI)1097-4636(19970905)36:3<306::AID-JBM5>3.0.CO;2-I
  20. M. T. Pham, M. F. Maitz, W. Matz, H. Reuther, E. Richter, G. Steiner, Promoted hydroxyapatite nucleation on titanium ion-implanted with sodium, Thin Solid Films, 379 (2000) 50-56. https://doi.org/10.1016/S0040-6090(00)01553-4
  21. M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27, (2006) 1728-1734. https://doi.org/10.1016/j.biomaterials.2005.10.003
  22. P. N. De Aza, F. Gutian, A. Merlos, E. Lora-Tamayo, S. De Aza, Bioceramic-simulated body fluid interfaces: pH and its influence of hydroxyapatite formation, J. Mater. Sci., Mater. Med, 7 (1996) 399-402. https://doi.org/10.1007/BF00122007

Cited by

  1. Mg-containing hydroxyapatite coatings on Ti-6Al-4V alloy for dental materials vol.432, 2018, https://doi.org/10.1016/j.apsusc.2017.06.263
  2. Corrosion phenomena of PEO-treated films formed in solution containing Mn, Mg, and Si ions 2018, https://doi.org/10.1016/j.apsusc.2017.12.209