• Title/Summary/Keyword: Oxide Deposition

Search Result 1,530, Processing Time 0.044 seconds

The study on the electrical characteristics of oxide thin film transistors with different annealing processes (열처리 공정에 따른 산화물 박막 트랜지스터의 전기적 특성에 관한 연구)

  • Park, Yu-Jin;Oh, Min-Suk;Han, Jeong-In
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.25-26
    • /
    • 2011
  • In this paper, we investigated the effect of various annealing processes on the electrical characteristics of oxide thin film transistors (TFTs). When we annealed the TFT devices before and after source/drain (S/D) process, we could observe the different electrical characteristics of oxide TFTs. When we annealed the TFTs after deposition of transparent indium zinc oxide S/D electrodes, the annealing process decreased the contact resistance but increased the resistivity of S/D electrodes. The field effect mobility, subthreshold slope and threshold voltage of the oxide TFTs annealed before and after S/D process were 5.83 and 4.47 $cm^2$/Vs, 1.20 and 0.82 V/dec, and 3.92 and 8.33 V respectively. To analyze the differences, we measured the contact resistances and the carrier concentrations using transfer length method (TLM) and Hall measurement.

  • PDF

Fluorine Effects on NMOS Characteristics and DRAM Refresh

  • Choi, Deuk-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2012
  • We observed that in chemical vapor deposition (CVD) tungsten silicide (WSix) poly gate scheme, the gate oxide thickness decreases as gate length is reduced, and it intensifies the roll-off properties of transistor. This is because the fluorine diffuses laterally from WSix to the gate sidewall oxide in addition to its vertical diffusion to the gate oxide during gate re-oxidation process. When the channel length is very small, the gate oxide thickness is further reduced due to a relative increase of the lateral diffusion than the vertical diffusion. In DRAM cells where the channel length is extremely small, we found the thinned gate oxide is a main cause of poor retention time.

The Charge Trapping Properties of ONO Dielectric Films (재산화된 질화산화막의 전하포획 특성)

  • 박광균;오환술;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.56-62
    • /
    • 1992
  • This paper is analyzed the charge trapping and electrical properties of 0(Oxide), NO(Nitrided oxide) and ONO(Reoxidized nitrided oxide) as dielectric films in MIS structures. We have processed bottom oxide and top oxide by the thermal method, and nitride(Si$_{3}N_{4}$) by the LPCVD(Low Pressure Chemical Vapor Deposition) method on P-type(100) Silicon wafer. We have studied the charge trapping properties of the dielectrics by using a computer controlled DLTS system. All of the dielectric films are shown peak nearly at 300K. Those are bulk traps. Many trap densities which is detected in NO films, but traps. Many trap densities which is detected in NO films. Varing the nitride thickness, the trap densities of thinner nitride is decreased than the thicker nitride. Finally we have found that trap densities of ONO films is affected by nitride thickness.

  • PDF

Synthesis of Cobalt Oxide Film by Thermal Decomposition for Potential Various Applications

  • Han, Seong Ho;Park, Bo Keun;Son, Seong Uk;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.365.1-365.1
    • /
    • 2014
  • Cobalt oxide has excellent various properties such as high catalytic activity, antiferromagnetism, and electrochromism. So cobalt oxides offer a great potential for their applications in the various areas such as optical gas sensor, catalysts for oxidation reaction, electrochromic devices, high temperature solar selective absorbers, magnetic materials, pigment for glasses and ceramics, and negative electrodes for lithium-ion batteries. We have synthesized novel cobalt complexes by simple reaction of cobalt bistrimethylsilylamide as a starting material with a lot of conventional ligands as potential cobalt oxide precursors. The studies include the facile preparation, structural characterization, and spectroscopic analysis of the new precursors. We are making efforts to grow cobalt oxide thin films using cobalt complexes newly synthesized in this study using deposition techniques.

  • PDF

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • Hoa, Nguyen Duc;Quy, Nguyen Van;O, Dong-Hun;Wei, Li;Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF