• Title/Summary/Keyword: Oxidative damage

Search Result 1,489, Processing Time 0.027 seconds

Nitric oxide, 8-hydroxydeoxyguanosine, and total antioxidant capacity in human seminal plasma of infertile men and their relationship with sperm parameters

  • Gholinezhad, Maryam;Aliarab, Azadeh;Abbaszadeh-Goudarzi, Ghasem;Yousefnia-Pasha, Yousefreza;Samadaian, Niusha;Rasolpour-Roshan, Korush;Aghagolzadeh-Haji, Hemat;Mohammadoo-Khorasani, Milad
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.1
    • /
    • pp.54-60
    • /
    • 2020
  • Objective: Oxidative stress plays a key role in the pathogenesis of male infertility. But, the adverse effects of oxidative biomarkers on sperm quality remain unclear. This study aimed to investigate the levels of nitric oxide (NO), 8-hydroxydesoxyguanosine (8-OHdG), and total antioxidant capacity (TAC) oxidative biomarkers in seminal plasma and their relationship with sperm parameters. Methods: A total of 77 volunteers participated in the study, including fertile (n = 40) and infertile men (n = 37). NO, 8-OHdG, and TAC levels were measured using the ferric reducing ability of plasma, Griess reagent method and an enzyme-linked immunosorbent assay kit, respectively. Results: The mean values of sperm parameters in the infertile group were significantly lower than those in the fertile group (p< 0.001). The mean 8-OHdG in the seminal plasma of infertile men was significantly higher (p= 0.013) than those of controls, while the mean TAC was significantly lower (p= 0.046). There was no significant difference in NO level between the two groups. The elevated seminal 8-OHdG levels were negatively correlated with semen volume, total sperm counts and morphology (p< 0.001, p= 0.001 and p= 0.052, respectively). NO levels were negatively correlated with semen volume, total sperm counts and morphology (p= 0.014, p= 0.020 and p= 0.060, respectively). Positive correlations between TAC and both sperm count and morphology (p= 0.043 and p= 0.025, respectively) were also found. Conclusion: These results suggested that increased levels of NO and 8-OHdG in seminal plasma could have a negative effect on sperm function by inducing damage to the sperm DNA hence their fertility potentials. Therefore, these biomarkers can be useful in the diagnosis and treatment of male infertility.

Effects of Chrysanthemum indicum L. Extract on the Function of Osteoblastic MC3T3-E1 Cells under Oxidative Stress Induced by Hydrogen PeroxideJee (감국(Chrysanthemum indicum L.) 추출물이 H2O2로 유도한 산화적 스트레스에서 MC3T3-E1 조골세포 기능에 미치는 영향)

  • Yun, Jee-Hye;Hwang, Eun-Sun;Kim, Gun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.82-88
    • /
    • 2012
  • Chrysanthemum indicum L. (Asteraceae) is a traditional herbal medicine that has been used for the treatment of inflammation, hypertension, and respiratory diseases due to its strong antagonistic activity against inflammatory cytokines. The effects of Chrysanthemum indicum L. Extract (CIE) for increasing cell growth, alkaline phosphatase (ALP) activity, and collagen content were totally inhibited, suggesting that the effect of CIE might be partly involved with estrogen activity. Furthermore, the protective effects of CIE on the response of osteoblasts to oxidative stress were evaluated. Osteoblastic MC3T3-E1 cells were incubated with hydrogen peroxide and/or CIE, and markers of osteoblast function and oxidative damage were examined. CIE significantly increased cell survival, ALP activity, and calcium deposition, and decreased the production of Reactive Oxygen Species (ROS) and Tumor Necrosis Factor-${\alpha}$ (TNF-${\alpha}$) in osteoblasts. Taken together, these results indicate that the enhancement of osteoblast function by CIE may prevent osteoporosis and inflammatory bone diseases.

Protective Effect of 3,5-Dicaffeoylquinic Acid Isolated from Ligularia fischeri against Oxidative Damage in HepG2 Cells (HepG2 세포에서 산화적 손상에 대한 곰취 유래 3,5-Dicaffeoylquinic Acid의 보호 효과)

  • Park, Sun-Young;Kim, Gur-Yoo;Jhoo, Jin-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1286-1292
    • /
    • 2017
  • This study was conducted to investigate the hepatoprotective effects of 3,5-dicaffeoylquinic acid (3,5-DCQA) isolated from Ligularia fischeri against hydrogen peroxide-induced oxidative stress in HepG2 cells. Antioxidative effects of 3,5-DCQA were determined by measuring antioxidant enzyme [superoxide dismutase (SOD), catalase (CAT) glutathione peroxidase (GPx)] expression levels against hydrogen peroxide-induced oxidative stress using real-time PCR analysis. 3,5-DCQA treatment significantly increased gene expression levels of SOD, CAT, and GPx in a dose-dependent manner ($10{\sim}30{\mu}g/mL$) in HepG2 cells. Hepatoprotective effects were analyzed by measuring glutamic oxaloacetic transaminase (GOT), lactate dehydrogenase (LDH), and gamma-glutamyl transferase (GGT) activities using a biochemistry analyzer in hydrogen peroxide-treated HepG2 cells. 3,5-DCQA treatment significantly reduced GOT, LDH, and GGT activities in a dose-dependent manner ($10{\sim}30{\mu}g/mL$) against increased liver function index enzyme activities induced by hydrogen peroxide oxidative stress in HepG2 cells. The results reveal that 3,5-DCQA compound isolated from Ligularia fischeri can be useful for the development of an effective hepatoprotective agent.

Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway

  • Lee, Hyesook;Park, Cheol;Kwon, Da Hye;Hwangbo, Hyun;Kim, So Young;Kim, Min Yeong;Ji, Seon Yeong;Kim, Da Hye;Jeong, Jin-Woo;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.15 no.6
    • /
    • pp.686-702
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS: To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1β, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS: The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1β, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS: Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.

Neuroprotective Effect of Root Extracts of Berberis Vulgaris (Barberry) on Oxidative Stress on SH-SY5Y Cells

  • Rad, Elham Shahriari;Eidi, Akram;Minai-Tehrani, Dariush;Bonakdar, Shahin;Shoeibi, Shahram
    • Journal of Pharmacopuncture
    • /
    • v.25 no.3
    • /
    • pp.216-223
    • /
    • 2022
  • Objectives: Oxidative stress plays a key role in chronic and acute brain disorders and neuronal damage associated with Alzheimer disease (AD) and other neurodegeneration symptoms. The neuroprotective effects of berberine and Berberis vulgaris (barberry) root extract against apoptosis induced by hydrogen peroxide (H2O2) in the human SH-SY5Y cell line were studied. Methods: The methanolic extraction of barberry root was performed using a maceration procedure. Oxidative stress was induced in SH-SY5Y cells by H2O2, and an MTT assay was applied to evaluate the neuroprotective effects of berberine and barberry root extract. The cells were pretreated with the half maximal inhibitory concentration (IC50) of each compound (including berberine, barberry root extract, and H2O2), and the anti-apoptotic effects of all components were investigated using RT-PCR. Results: The SH-SY5Y cell viability increased in both groups exposed to 75 and 150 ppm barberry extract compared with that in the H2O2-treated group. The data showed that exposing SH-SY5Y cells to 30 ppm berberine significantly increased the cell viability compared with the H2O2-treated group; treatment with 150 and 300 ppm berberine and H2O2 significantly decreased the SH-SY5Y cell viability and was associated with berberine cytotoxicity. The mRNA levels of Bax decreased significantly under treatment with berberine at 30 ppm compared with the control group. A significant increase in Bcl-2 expression was observed only after treatment with the IC50 of berberine. The expression level of Bcl-2 in cells exposed to both berberine and barberry extracts was also significantly higher than that in cells exposed to H2O2. Conclusion: The outcomes of this study suggest that treatment of SH-SY5Y cells with barberry extract and berberine could suppress apoptosis by regulating the actions of Bcl-2 family members.

Protodioscin protects porcine oocytes against H2O2-induced oxidative stress during in vitro maturation

  • So-Hee Kim;Seung-Eun Lee;Jae-Wook Yoon;Hyo-Jin Park;Seung-Hwan Oh;Do-Geon Lee;Da-Bin Pyeon;Eun-Young Kim;Se-Pill Park
    • Animal Bioscience
    • /
    • v.36 no.5
    • /
    • pp.710-719
    • /
    • 2023
  • Objective: The present study investigated whether protodioscin (PD), a steroidal saponin mainly found in rhizome of Dioscorea species, alleviates oxidative stress-induced damage of porcine oocytes during in vitro maturation. Methods: Oocytes were treated with different concentrations of PD (0, 1, 10, 100, and 200 µM) in the presence of 200 µM H2O2 during in vitro maturation. Following maturation, spindle morphology and mitogen-activated protein kinase activity was assessed along with reactive oxygen species level, GSH activity, and mRNA expression of endogenous antioxidant genes at the MII stage. On the day 7 after parthenogenetic activation, blastocyst formation rate was calculated and the quality of embryo and mRNA expression of development-related genes was evaluated. Results: Developmental competence was significantly poorer in the 0 µM PD-treated (control) group than in the non-treated (normal) and 10 µM PD-treated (10PD) groups. Although the reactive oxygen species level did not significantly differ between these three groups, the glutathione level and mRNA expression of antioxidant genes (superoxide dismutase 1 [SOD1], SOD2, nuclear factor erythroid 2-related factor 2 [Nrf2], and hemo oxygenase-1 [HO-1]) were significantly higher in the normal and 10PD groups than in the control group. In addition, the percentage of oocytes with defective spindle and abnormal chromosomal alignment was significantly lower and the ratio of phosphorylated p44/42 to total p44/42 was significantly higher in the normal and 10PD groups than in the control group. The total cell number per blastocyst was significantly higher in the 10PD group than in the control group. The percentage of apoptotic cells in blastocysts was highest in the control group; however, the difference was not significant. mRNA expression of development-related genes (POU domain, class 5, transcription factor 1 [POU5F1], caudal type homeobox 2 [CDX2], Nanog homeobox [NANOG]) was consistently increased by addition of PD. Conclusion: The PD effectively improves the developmental competence and quality of blastocysts by protecting porcine oocytes against oxidative stress.

Changes of superoxide dismutase and glutathione peroxidase in light damaged rat retina

  • Kaidzu, Sachiko;Tanito, Masaki;Takanashi, Taiji;Ohira, Akihiro
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.430-432
    • /
    • 2002
  • The changes in expression of copper-zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD) and glutathione peroxidase (GPX) in light-damaged rat retinas were examined. Sprague-Dawley rats (male, 6-weeks-old) were maintained on a cyclic photoperiod (12 hours light and 12 hours darkness) for 2 weeks. The illumination intensity during the light period was 80 lux. To induce light damage to the retina, a high-intensity illumination (3000-lux) was applied to the animals for 24 hours. After light exposure, the animals were returned to cyclic lighting. Eyes were enucleated 12 and 24 hours after light exposure started or 1,3, and 7 days after light exposure ended. Eyes were fixed and embedded in paraffin wax. Tissues were cut into 4${\mu}{\textrm}{m}$-thick sections. Sections were immunostained using antibody against CuZn-SOD, Mn-SOD, GPX and 8-hydroxy-deoxyguanocine (8-OHdG) as oxidative stress marker. 8-OHdG was observed in the outer nuclear layer (ONL) and retinal pigment epithelium (RPE) during light exposure. In light-damaged retinas CuZn-SOD labeling was up regulated in the ONL and RPE. Mn-SOD labeling was up regulated in rod inner segments (RIS) during light exposure and that in the RPE was up regulated after exposure. GPX labeling was observed in rod outer segments (ROS) during light exposure. GPX labeling was also observed in the RPE during and after light exposure. All three enzymes were observed in the outer retina, which suffered light damage, but occurred in defferent layers except within the RPE, in which case all three were expressed. These enzymes may play complementary roles as protective factors in light-damaged retinas.

  • PDF

Antioxidative and Neuroprotective Effects of Enzymatic Extracts from Leaves of Perilla frutescens var.japonica

  • Kim, Eun-Kyung;Lee, Seung-Jae;Lim, Beong-Ou;Jeon, You-Jin;Song, Min-Dong;Park, Tae-Kyu;Lee, Kwang-Ho;Kim, Bo-Kyung;Lee, Sang-Rak;Moon, Sang-Ho;Jeon, Byong-Tae;Park, Pyo-Jam
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.279-286
    • /
    • 2008
  • The antioxidative activity of various enzymatic extracts from leaves of Perilla frutescens var. japonica was evaluated by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl, and alkyl radical scavenging activity using an electron spin resonance (ESR) spectrometer. For this study, the leaves were enzymatically hydrolyzed by 8 carbohydrases (Dextrozyme, AMG, Promozyme, Maltogenase, Termamyl, Viscozyme, Celluclast, and BAN) and 9 proteases [Flavourzyme, Neutrase, Protamex, Alcalase, PP-trypsin (trypsin from porcine pancreas), papain, pepsin, $\alpha$-chymotrypsin, and BP-trypsin (trypsin from bovine pancreas)]. The DPPH radical scavenging activities of Promozyme and Alcalase extracts were the highest, and the $IC_{50}$ values were 77.25 and $109.66\;{\mu}g/mL$, respectively. All enzymatic extracts of the leaves scavenged hydroxyl radical, and the $IC_{50}$ values of Celluclast and pepsin extracts which were the highest activity were 243.34 and $241.86\;{\mu}g/mL$, respectively. The BAN and $\alpha$-chymotrypsin extracts showed the highest scavenging activities, and the $IC_{50}$ values were 21.13 and $33.23\;{\mu}g/mL$, respectively. The pepsin extracts from the leaves showed protective effect on $H_2O_2$-induced DNA damage. In addition, the pepsin extracts decreased cell death in PC-12 cells against $H_2O_2$-induced oxidative damage. The findings of the present study suggest that enzymatic extracts of the leaves possess antioxidative activity.

Carnosine and Related Compounds Protect Against Copper-Induced Damage of Biomolecules

  • Lee, Beom-Jun;Lee, Yong-Soon;Kang, Kyung-Sun;Cho, Myung-Haing;Hendricks, Deloy G.
    • BMB Reports
    • /
    • v.32 no.4
    • /
    • pp.350-357
    • /
    • 1999
  • At concentrations of 1 mM, the protective effects of carnosine and related compounds including anserine, homocarnosine, histidine, ${\beta}$-alanine were investigated against copper-catalyzed oxidative damage to deoxyribose, ascorbic acid, human serum albumin, liposome, and erythrocytes. Carnosine and anserine reduced Cu (II) to bathocuproine-reactive Cu (I) in a time- a and a dose-dependent manner while the others did not. Carnosine reduced 86% of $100\;{\mu}M$ Cu (II) in 60 min. Carnosine, homocarnosine, anserine, and histidine inhibited copper-catalyzed deoxyribose degradation by 75, 66, 65, and 45%, respectively. In the presence of $1\;{\mu}M$ Cu (II), carnosine and related compounds inhibited ascorbic acid oxidation by 55-85% after incubation for 20 min. In the presence of 0.15 mM ascorbic acid and 0.8 mM $H_2O_2$, carnosine, anserine, homocarnosine, and histidine inhibited copper-catalyzed oxidation of human serum albumin by 41, 21, 29, and 24%, respectively, as determined by carbonyl formation. These compounds also significantly inhibited copper-catalyzed liposomal lipid peroxidation as measured by malondialehyde and lipid hydroperoxides. Carnosine, anserine, homocarnosine, and histidine inhibited hemolysis of bovine erythrocytes induced by 0.1 mM Cu (II). These results suggest that histidine-containing dipeptides may play an important role in protecting against free radical-mediated tissue damage.

  • PDF

Effect of Colored Potato Flakes Against Acetaminophen-induced Liver Damage in Rats

  • Ohba, Kiyoshi;Watanabe, Shoko;Han, Kyu-Ho;Hashimoto, Naoto;Noda, Takahiro;Shimada, Ken-Ichiro;Tanaka, Hisashi;Sekikawa, Mitsuo;Fukushima, Michihiro
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.463-469
    • /
    • 2007
  • We examined the hepatoprotective effects of colored potato flakes on acetaminophen (AAP)-induced liver damage in rats. F344/DuCrj (8 week-old) rats were fed a cholesterol-free diet with 54.9486 g of ${\alpha}$-corn starch/100g diet and were orally treated with 25% colored flakes of Kitamurasaki (KM: light purple), Northern Ruby (NR: red), and Shadow Queen (SQ: medium purple) potatoes co-administered with AAP (0.5 g/100 g diet) for 4 weeks. The hepatic thiobarbituric acid-reactive substances (TBARS) values in the KM, NR, and SQ groups were significantly lower (p<0.05) than those in the control groups with and without AAP. Furthermore, the hepatic catalase, Mn-superoxide dismutase (SOD), and Cu/Zn-SOD mRNA levels in the KM, NR, and SQ groups were higher than those in the control groups with and without AAP. The present findings suggest that colored potato flakes are useful as a prophylactic agent against oxidative liver damage.