DOI QR코드

DOI QR Code

Effects of Chrysanthemum indicum L. Extract on the Function of Osteoblastic MC3T3-E1 Cells under Oxidative Stress Induced by Hydrogen PeroxideJee

감국(Chrysanthemum indicum L.) 추출물이 H2O2로 유도한 산화적 스트레스에서 MC3T3-E1 조골세포 기능에 미치는 영향

  • Yun, Jee-Hye (Department of Food and Nutrition, Duksung Women's University) ;
  • Hwang, Eun-Sun (Department of Nutrition and Culinary Science, Hankyong National University) ;
  • Kim, Gun-Hee (Department of Food and Nutrition, Duksung Women's University)
  • 윤지혜 (덕성여자대학교 식품영양학과) ;
  • 황은선 (한경대학교 영양조리과학과) ;
  • 김건희 (덕성여자대학교 식품영양학과)
  • Received : 2011.07.26
  • Accepted : 2011.10.06
  • Published : 2012.02.29

Abstract

Chrysanthemum indicum L. (Asteraceae) is a traditional herbal medicine that has been used for the treatment of inflammation, hypertension, and respiratory diseases due to its strong antagonistic activity against inflammatory cytokines. The effects of Chrysanthemum indicum L. Extract (CIE) for increasing cell growth, alkaline phosphatase (ALP) activity, and collagen content were totally inhibited, suggesting that the effect of CIE might be partly involved with estrogen activity. Furthermore, the protective effects of CIE on the response of osteoblasts to oxidative stress were evaluated. Osteoblastic MC3T3-E1 cells were incubated with hydrogen peroxide and/or CIE, and markers of osteoblast function and oxidative damage were examined. CIE significantly increased cell survival, ALP activity, and calcium deposition, and decreased the production of Reactive Oxygen Species (ROS) and Tumor Necrosis Factor-${\alpha}$ (TNF-${\alpha}$) in osteoblasts. Taken together, these results indicate that the enhancement of osteoblast function by CIE may prevent osteoporosis and inflammatory bone diseases.

감국 에탄올 추출물이 $H_2O_2$로 유도한 산화적 스트레스 상황에서 MC3T3-E1 조골세포의 증식 및 분화, ROS 생성 및 염증 매개성 cytokine인 TNF-${\alpha}$ 생성 등에 미치는 영향을 분석하였다. $H_2O_2$로 유도한 산화적 스트레스 상황에서 감국 에탄올 추출물은 30-100 ${\mu}g/mL$ 농도 범위에서 조골세포의 증식을 유의적으로 증가시켰다. 또한, 감국 에탄올 추출물 200 ${\mu}g/mL$ 농도에서 ALP 활성이 약 1.5배 유의적인 증가를 나타냈다. 그러나 collagen 합성에는 유의적 차이를 보이지 않았다. Mineralization 측정에서는 200 ${\mu}g/mL$ 농도에서 대조군에 비해 유의적 증가를 보였다. $H_2O_2$로 유도한 산화적 스트레스 상황에서 감국 에탄올 추출물이 intracellular ROS 생성에 미치는 영향을 측정해본 결과, 30 ${\mu}g/mL$ 농도에서 antioxidant인 trolox 20 ${\mu}M$과 유사한 ROS 생성수준을 나타내어 유사한 항산화 효과를 보였으며, 그 이상의 농도에서는 더 높은 항산화 효과를 나타냈다. $H_2O_2$로 유도한 산화적 스트레스 상황에서 조골세포의 collagen 및 ALP의 합성을 억제하고 파골세포로의 분화 증강과 골흡수를 촉진시키는 것으로 알려진 TNF-${\alpha}$ 생성정도를 측정한 결과, 감국 에탄올 추출물 처리에 의해 농도 의존적으로 생성이 감소되었으며, 200 ${\mu}g/mL$ 농도에서 대조군 대비 89% 수준을 나타내어 유의적 차이를 보였다. 이상의 결과를 통해 감국 에탄올 추출물은 $H_2O_2$로 유도된 산화적 스트레스 상황에서 세포 내 ROS 생성과 염증매개 cytokine인 TNF-${\alpha}$ 생성을 감소시킴으로써 조골세포 손상과 활성 감소를 억제하고, 증식과 분화를 촉진시키는 효과가 있는 것을 확인할 수 있었다. 따라서 감국 에탄올 추출물의 골다공증 예방을 위한 식물성 에스트로젠(phytoestrogen) 및 항산화 소재로의 이용 가능성이 있을 것으로 사료된다.

Keywords

References

  1. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol. Rev. 78: 547-581 (1998)
  2. Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev. 30: 325-243 (1998)
  3. Egawa K, Yoshiwara M, Shibanuma M, Nose K. Isolation of a novel ras-recision gene that is induced by hydrogen peroxide from a mouse osteoblastic cell line, MC3T3-E1. FEBS Lett. 372: 74-77 (1995) https://doi.org/10.1016/0014-5793(95)00957-B
  4. Lee DH, Lim BS, Lee YK, Yang HC. Effect of hydrogen peroxide ($H_{2}O_{2}$) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol. Toxicol. 22: 39-46 (2006) https://doi.org/10.1007/s10565-006-0018-z
  5. Liu AL, Zhang ZM, Zhu BF, Liao ZH, Liu Z. Metallothionein protects bone marrow stromal cells against hydrogen peroxideinduced inhibition of osteoblastic differentiation. Cell Biol. Int. 28: 905-911 (2004) https://doi.org/10.1016/j.cellbi.2004.09.004
  6. Lee KH, Choi EM. Biochanin A. Stimulates osteoblastic differentiation and inhibits hydrogen peroxide-induced production of inflammatory mediators in MC3T3-E1 cells Biol. Pharm. Bull. 28: 1948-1953 (2005) https://doi.org/10.1248/bpb.28.1948
  7. Parfitt AM. Osteonal and hemi-osteonal remodeling: The spatial andtemporal framework for signal traffic in adult human bone. J. Cell Biochem. 55: 273-86 (1994) https://doi.org/10.1002/jcb.240550303
  8. Mone Z. Skeletal remodeling in health and disease. Nat. Med. 13: 791-801 (2007) https://doi.org/10.1038/nm1593
  9. Han IG. Osteoporosis diagnosis and medicinal remedy. J. Korean Acad. Fam. Med. 14: 348-355 (1993)
  10. Kim KS, Min BK, Lee SP, Kim IS, Kim HY, Sim JR. Evaluation of biochemical markers of bone turnover in postmenopausal osteoporotic women to alendronate treatment. J. Korean Soc. Menopause 6: 36-42 (2000)
  11. Rogers J. Estrogens in the menopause and postmenopause. New Engl. J. Med. 280: 364-367 (1967)
  12. Tolmasoff JM, Ono T, Cutler RG. Superoxide dismutase: Correlation with life-span and specific metabolic rate in primate species. P. Natl. Acad. Sci. USA 77: 2777-2781 (1980) https://doi.org/10.1073/pnas.77.5.2777
  13. Sohal RS, Allen RG. Oxidative stress as a causal factor in differentiation and aging: A unifying hypothesis. Exp. Gerontol. 25: 499-522 (1990) https://doi.org/10.1016/0531-5565(90)90017-V
  14. Basu S, Michaelsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem. Bioph. Res. Co. 288: 275-279 (2001) https://doi.org/10.1006/bbrc.2001.5747
  15. Maggio D, Barabani M, Pierandrei M, Polidori C, Catani M, Mecocci P, Senin U, Pacifci R, Cherubini A. Marked decrease in plasma antioxidants in aged osteoporotic women: Results of a cross-sectional study. J. Clin. Endocr. Metab. 88: 1523-1527 (2003) https://doi.org/10.1210/jc.2002-021496
  16. Morton D, Barrett-Connor EL, Schneider DL. Vitamin C supplement use and bone mineral density in postmenopausal women. J. Bone Miner. Res. 16: 135-140 (2001) https://doi.org/10.1359/jbmr.2001.16.1.135
  17. Garrett IR, Boyce BF, Oreffo ROC, Bonewald L, Poser J, Mundy GR. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Invest. 85: 632-639 (1990) https://doi.org/10.1172/JCI114485
  18. Fraser JHE, Helfrich MH, Wallace HM, Ralston S. Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone 19: 223-226 (1996) https://doi.org/10.1016/8756-3282(96)00177-9
  19. Mody L, Parhami F, Sarafian TA, Demer LL. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radical Bio. Med. 31: 509-519 (2001) https://doi.org/10.1016/S0891-5849(01)00610-4
  20. Nicholson NC, Ramp WK, Kneisl JS, Kaysinger KK. Hydrogen peroxide inhibits giant cell tumor and osteoblast metabolism in vitro. Clin. Orthop. Relat. R. 347: 250-260 (1998)
  21. Smith DD, Gowen M, Mundy GR. Effects of interferon-r and other cytokines in collagen synthesis in fetal rat bone cultures. Endocrinology 120: 2494-2499 (1987) https://doi.org/10.1210/endo-120-6-2494
  22. Centrella M, McCarthy TL, Canalis E. Tumor necrosis factor-$\alpha$ inhibits collagen synthesis and alkaline phosphatase activity independently of its effect on deoxyribonucleic acid synthesis in osteoblast-enriched bone cell cultures. Endocrinology 123: 1442- 1448 (1988) https://doi.org/10.1210/endo-123-3-1442
  23. Nanes MS, Rubin J, Titus L, Hendy GN, Catherwood B. Tumor necrosis factor-$\alpha$ inhibits 1,25-dihyroxybitamin D3-stimulated bone Gla protein synthesis in rat osteosarcoma cells by a pretranslational mechanism. Endocrinology 128: 2577-2582 (1991) https://doi.org/10.1210/endo-128-5-2577
  24. Kuno H, Kurian SM, Hendy GN, White J, DeLuca HF, Evans CO. Inhibition of 1,25-dihyroxybitamin D3 stimulated osteoclacin gene translocation by tumor necrosis factor-$\alpha$: Structural determinants within the vitamin D response element. Endocrinlogy 134: 2524-2531 (1994) https://doi.org/10.1210/en.134.6.2524
  25. Kurolouchi K, Kambe F, Yasukawa K, Izumi R, Ishiguro N Iwata H. TNF-$\alpha$ increases expression of IL-6 and ICAM-1 genes through activation of NK-B in osteoblast-like ROS17/2.8 cells. J. Bone Miner. Res. 13: 1290-1299 (1998) https://doi.org/10.1359/jbmr.1998.13.8.1290
  26. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A. IL-6 is produced by osteoblasts and induces bone resorption. J. Immunol. 145: 3297-3303 (1990)
  27. Passeri G, Girasole G, Manolagas SC, Jilka RL. Endogenous production of tumor necrosis factor y primary cultures of murine clvarial cells: Influence on IL-6 production and osteoclast development. Bone Miner. 24: 109-126 (1994) https://doi.org/10.1016/S0169-6009(08)80149-3
  28. Felix R, Fleisch H, Elford PR. Bone-resorbing cytokines enhance release of macrophage colony-stimulating activity by the osteoblastic cell MB3T3-E1. Calcified Tissue Int. 41: 356-360 (1989)
  29. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B. Increased osteoclast development after estrogen loss: Mediation by interleukin-6. Science 257: 88-91 (1992) https://doi.org/10.1126/science.1621100
  30. Stein B, Yang MX. Repression of the interleukin-6 promoter by estrogen receptor is mediated by NK-B and C/EBP beta. Mol. Cell Biol. 15: 4971-4979 (1995)
  31. Ammann P, Rizzoli R, Bonjour JP, Bourrin S, Mcyer JM, Vassalli P. Transgenic mice expressing soluble tumor necrosis factorreceptor are protected against bone loss caused by estrogen deficiency. J. Clin. Invest. 99: 1699-1703 (1997) https://doi.org/10.1172/JCI119333
  32. Vassalli P. The pathophysiology of tumor necrosis factors. Annu. Rev. Immunol. 10: 411-452 (1992) https://doi.org/10.1146/annurev.iy.10.040192.002211
  33. Centrella M, McCartht TL, Canalis E. Transforming growth factor B is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fatal rat bone. J. Biol. Chem. 262: 2869-2874 (1987)
  34. Shin YJ, Jeon JR, Park GS. Physicochemical properties of gamgug (Chrysanthemun indicum L.). J. Korean Soc. Food Sci. Nutr. 33: 146-151 (2004) https://doi.org/10.3746/jkfn.2004.33.1.146
  35. Park CS. Chrysanthemum Raise & Tubular. Chungwoon Publishing Company, Seoul, Korea. p. 21 (1965)
  36. Hong UC. Essential oil compositions Chrysanthemum boreale and Chrysanthemum indicum. J. Korean Soc. Agric. Chem. Biotechnol. 45: 108-113 (2002)
  37. Jang DS, Park KH, Lee JR, Ha TJ, Park YB, Nam SH, Yang MS. Antimicrobial activities of sesquiterpene lactones isolated from Hemisteptia lyrata, Chrysanthemum zawadskii, and Chrysanthemum boreale. J. Korean Soc. Agric. Chem. Biotechnol. 44: 137-142 (1999)
  38. Shunying Z, Yang Y, Huaidong Y, Yue Y, Guolin Z. Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. J. Ethnopharmacol. 96: 151-158 (2005) https://doi.org/10.1016/j.jep.2004.08.031
  39. Lee DY, Choi GY, Yoon TS, Cheon MS, Choo BK, Kim HK. Anti-inflammatory activity of Chrysanthemum indicum extract in acute and chronic cutaneous inflammation. J. Ethnopharmacol. 123: 149-154 (2009) https://doi.org/10.1016/j.jep.2009.02.009
  40. Cheon MS, Yoon TS, Lee DY, Choi GY, Moon BC, Lee AY, Choo BK, Kim HK. Chrysanthemum indicum Linne extract inhibits the inflammatory response by suppressing NF-B and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophages. J. Ethnopharmacol. 122: 473-477 (2009) https://doi.org/10.1016/j.jep.2009.01.034
  41. Ren, AN, Wang, ZG, Lu ZC, Wang, LW, Wu YL. Study on bacteriostasis and antivirotic of flowers Chrysanthemum indicum. Pharmaceutical Biotechnol. 6: 241–244 (1999)
  42. Kong LD, Cai Y, Huang WW, Cheng CH, Tan RX. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J. Ethnopharmacol. 73: 199-207 (2000) https://doi.org/10.1016/S0378-8741(00)00305-6
  43. Wang ZG, Ren AN, Xu L, Sun XJ, Hua XB. The experimental study on the immunological and anti-inflammatory activities of Chrysanthemum indicum. Chinese J. Traditional Med. Sci. Technol. 2: 92-93 (2000)
  44. Cheng W, Li J, You T, Hu C. Anti-inflammatory and immunomodulatory activities of the extracts from the inflorescence of Chrysanthemum indicum Linne. J. Ethnopharmacol. 101: 334-337 (2005) https://doi.org/10.1016/j.jep.2005.04.035
  45. Yoshikawa M, Morikawa T, Toguchida I, Harima S, Matsuda H. Medicinal flowers. II. Inhibitors of nitric oxide production and absolute stereostructures of five new germacrane-type sesquiterpenes, kikkanols D, D monoacetate, E, F, and F monoacetate from the flowers of Chrysanthemum indicum L. Chem. Pharm. Bull. 48: 651-656 (2002)
  46. Lee SH, Hwang IG, Nho JW, Chang WD, Lee CH, Woo KS, Jeong HS. Quality characteristics and antioxidant activity of Chrysanthemum indicum L., Chrysanthemum boreale M. and Chrysanthemum zawadskii K. powdered teas. J. Korean Soc. Food Sci. Nutr. 38: 824-831 (2009) https://doi.org/10.3746/jkfn.2009.38.7.824
  47. Li ZF, Wang ZD, Ji YY, Zhang S, Huang C, Li J, Xia XM. Induction of apoptosis and cell cycle arrest in human HCC MHCC97H cells with Chrysanthemum indicum extract. World J. Gastroentero. 15: 4538-4546 (2009) https://doi.org/10.3748/wjg.15.4538
  48. Cho MS.Effects of apigenin (4', 5, 7-trihydroxyflavone) on the inhibition of $H_{2}O_{2}$-induced cell death in MC3T3-E1 osteoblast cells. Ph.D thesis, Dongguk University, Seoul, Korea (2008)
  49. Oh ES, Baek KH, Lee WY, Oh KW, Kim HS, Han JH, Lee KW, Son HY, Kang SK, Kang MI. The effect of oxidative stress on the proliferation and differentiation of human bone marrow stromal cell-derived osteoblasts. J. Korean Soc. Endocrinol. 21: 222- 232 (2006)
  50. Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, CHeng BL, Luo SQ. Reactive oxygen species stimulates receptor activator of NF-kB ligand expression in osteoblast. J. Biol. Chem. 280: 17497-17506 (2005) https://doi.org/10.1074/jbc.M409332200
  51. Park YH, Han DW, Suh H, Ryu GH, Hyon SH, Cho BK, Park JC. Protective effects of green tea polyphenol against reactive oxygen species-induced oxidative stress in cultured rat calvarial osteoblast. Cell Biol. Toxicol. 19: 325-337 (2003) https://doi.org/10.1023/B:CBTO.0000004986.51081.c5
  52. Choi EM, Kim GH, Lee YS. Atractylodes japonica root extract protects osteoblastic MC3T3-E1 Cells against hydrogen peroxideinduced inhibition of osteoblastic differentiation. Phytother. Res. 23: 1537-1542 (2009) https://doi.org/10.1002/ptr.2813
  53. Poljsak B, Gazdag Z, Pesti M, Jenko-Brinovec S, Belagyi J, Plesnicara S, Raspor P. Pro-oxidative versus antioxidative reactions between Trolox and Cr(VI): The role of $H_{2}O_{2}$. Environ. Toxicol. Phar. 22: 15-19 (2006) https://doi.org/10.1016/j.etap.2005.11.004
  54. Sung JY. Study on the anti-oxidant activity of extracts from the Chrysanthemum indicum L. J. App. Orient Med. 7: 1-5 (2007)
  55. Nam JY, Lee HS, Lee SW, Chung MY, Yoo ES, Rho MC, Kim YK. Effect of kikkanol F monoacetate and 5-hydroxy-6,7,3',4'- tetramethoxyflavone isolated from Chrysanthemum indicum L. on IL-6 production. Korean J. Pharmacogn. 36: 186-190 (2005)

Cited by

  1. Antioxidant Activities of Medicinal Plant Extracts vol.42, pp.4, 2013, https://doi.org/10.3746/jkfn.2013.42.4.512
  2. Effect of Volatile Organic Chemicals in Chrysanthemum indicum Linné on Blood Pressure and Electroencephalogram vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23082063