DOI QR코드

DOI QR Code

Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway

  • Lee, Hyesook (Anti-Aging Research Center, Dong-Eui University) ;
  • Park, Cheol (Division of Basic Sciences, College of Liberal Studies, Dong-Eui University) ;
  • Kwon, Da Hye (Anti-Aging Research Center, Dong-Eui University) ;
  • Hwangbo, Hyun (Anti-Aging Research Center, Dong-Eui University) ;
  • Kim, So Young (Anti-Aging Research Center, Dong-Eui University) ;
  • Kim, Min Yeong (Anti-Aging Research Center, Dong-Eui University) ;
  • Ji, Seon Yeong (Anti-Aging Research Center, Dong-Eui University) ;
  • Kim, Da Hye (Anti-Aging Research Center, Dong-Eui University) ;
  • Jeong, Jin-Woo (Nakdonggang National Institute of Biological Resources) ;
  • Kim, Gi-Young (Department of Marine Life Sciences, Jeju National University) ;
  • Hwang, Hye-Jin (Department of Food and Nutrition, Dong-Eui University) ;
  • Choi, Yung Hyun (Anti-Aging Research Center, Dong-Eui University)
  • Received : 2021.02.09
  • Accepted : 2021.04.27
  • Published : 2021.12.01

Abstract

BACKGROUND/OBJECTIVES: Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS: To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1β, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS: The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1β, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS: Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.

Keywords

Acknowledgement

This research was funded by the Basic Science Research Program through the National Research Foundation of Korea (grant number: 2019R1C1C1008623).

References

  1. Loxham M, Nieuwenhuijsen MJ. Health effects of particulate matter air pollution in underground railway systems - a critical review of the evidence. Part Fibre Toxicol 2019;16:12. https://doi.org/10.1186/s12989-019-0296-2
  2. Almetwally AA, Bin-Jumah M, Allam AA. Ambient air pollution and its influence on human health and welfare: an overview. Environ Sci Pollut Res Int 2020;27:24815-30. https://doi.org/10.1007/s11356-020-09042-2
  3. Lynch HN, Loftus CT, Cohen JM, Kerper LE, Kennedy EM, Goodman JE. Weight-of-evidence evaluation of associations between particulate matter exposure and biomarkers of lung cancer. Regul Toxicol Pharmacol 2016;82:53-93. https://doi.org/10.1016/j.yrtph.2016.10.006
  4. Wu JZ, Ge DD, Zhou LF, Hou LY, Zhou Y, Li QY. Effects of particulate matter on allergic respiratory diseases. Chronic Dis Transl Med 2018;4:95-102. https://doi.org/10.1016/j.cdtm.2018.04.001
  5. Combes A, Franchineau G. Fine particle environmental pollution and cardiovascular diseases. Metabolism 2019;100S:153944. https://doi.org/10.1016/j.metabol.2019.07.008
  6. Liu B, Wu J, Zhang J, Wang L, Yang J, Liang D, Dai Q, Bi X, Feng Y, Zhang Y, Zhang Q. Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ Pollut 2017;222:10-22. https://doi.org/10.1016/j.envpol.2017.01.005
  7. Yang Y, Ruan Z, Wang X, Yang Y, Mason TG, Lin H, Tian L. Short-term and long-term exposures to fine particulate matter constituents and health: a systematic review and meta-analysis. Environ Pollut 2019;247:874-82. https://doi.org/10.1016/j.envpol.2018.12.060
  8. He M, Ichinose T, Yoshida S, Ito T, He C, Yoshida Y, Arashidani K, Takano H, Sun G, Shibamoto T. PM2.5-induced lung inflammation in mice: differences of inflammatory response in macrophages and type II alveolar cells. J Appl Toxicol 2017;37:1203-18. https://doi.org/10.1002/jat.3482
  9. Tang Q, Huang K, Liu J, Wu S, Shen D, Dai P, Li C. Fine particulate matter from pig house induced immune response by activating TLR4/MAPK/NF-κB pathway and NLRP3 inflammasome in alveolar macrophages. Chemosphere 2019;236:124373. https://doi.org/10.1016/j.chemosphere.2019.124373
  10. Shukla A, Timblin C, BeruBe K, Gordon T, McKinney W, Driscoll K, Vacek P, Mossman BT. Inhaled particulate matter causes expression of nuclear factor (NF)-kappaB-related genes and oxidant-dependent NF-kappaB activation in vitro. Am J Respir Cell Mol Biol 2000;23:182-7. https://doi.org/10.1165/ajrcmb.23.2.4035
  11. Jeong S, Park SA, Park I, Kim P, Cho NH, Hyun JW, Hyun YM. PM2.5 Exposure in the respiratory system induces distinct inflammatory signaling in the lung and the liver of mice. J Immunol Res 2019;2019:3486841.
  12. Wyatt LH, Devlin RB, Rappold AG, Case MW, Diaz-Sanchez D. Low levels of fine particulate matter increase vascular damage and reduce pulmonary function in young healthy adults. Part Fibre Toxicol 2020;17:58. https://doi.org/10.1186/s12989-020-00389-5
  13. Piao MJ, Ahn MJ, Kang KA, Ryu YS, Hyun YJ, Shilnikova K, Zhen AX, Jeong JW, Choi YH, Kang HK, Koh YS, Hyun JW. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis. Arch Toxicol 2018;92:2077-91. https://doi.org/10.1007/s00204-018-2197-9
  14. Lee H, Hwang-Bo H, Ji SY, Kim MY, Kim SY, Park C, Hong SH, Kim GY, Song KS, Hyun JW, Choi YH. Diesel particulate matter2.5 promotes epithelial-mesenchymal transition of human retinal pigment epithelial cells via generation of reactive oxygen species. Environ Pollut 2020;262:114301. https://doi.org/10.1016/j.envpol.2020.114301
  15. Wei H, Yuan W, Yu H, Geng H. Cytotoxicity induced by fine particulate matter (PM2.5) via mitochondriamediated apoptosis pathway in rat alveolar macrophages. Environ Sci Pollut Res Int 2021;21:1-11.
  16. Rao X, Zhong J, Brook RD, Rajagopalan S. Effect of particulate matter air pollution on cardiovascular oxidative stress pathways. Antioxid Redox Signal 2018;28:797-818. https://doi.org/10.1089/ars.2017.7394
  17. Ovrevik J. Oxidative potential versus biological effects: a review on the relevance of cell-free/abiotic assays as predictors of toxicity from airborne particulate matter. Int J Mol Sci 2019;20:4772. https://doi.org/10.3390/ijms20194772
  18. Guan L, Geng X, Stone C, Cosky EE, Ji Y, Du H, Zhang K, Sun Q, Ding Y. PM2.5 exposure induces systemic inflammation and oxidative stress in an intracranial atherosclerosis rat model. Environ Toxicol 2019;34:530-8. https://doi.org/10.1002/tox.22707
  19. Panossian A, Wikman G. Pharmacology of Schisandra chinensis Bail.: an overview of Russian research and uses in medicine. J Ethnopharmacol 2008;118:183-212. https://doi.org/10.1016/j.jep.2008.04.020
  20. Zhang M, Xu L, Yang H. Schisandra chinensis Fructus and its active ingredients as promising resources for the treatment of neurological diseases. Int J Mol Sci 2018;19:1970. https://doi.org/10.3390/ijms19071970
  21. Chun JN, Cho M, So I, Jeon JH. The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: a review of the molecular mechanisms. Fitoterapia 2014;97:224-33. https://doi.org/10.1016/j.fitote.2014.06.014
  22. Nowak A, Zaklos-Szyda M, Blasiak J, Nowak A, Zhang Z, Zhang B. Potential of Schisandra chinensis (Turcz.) Baill. in human health and nutrition: a review of current knowledge and therapeutic perspectives. Nutrients 2019;11:333. https://doi.org/10.3390/nu11020333
  23. Song FJ, Zeng KW, Chen JF, Li Y, Song XM, Tu PF, Wang XM. Extract of Fructus Schisandrae chinensis inhibits neuroinflammation mediator production from microglia via NF-kappa B and MAPK pathways. Chin J Integr Med 2019;25:131-8. https://doi.org/10.1007/s11655-018-3001-7
  24. Jeong JW, Lee HH, Choi EO, Lee KW, Kim KY, Kim SG, Hong SH, Kim GY, Park C, Kim HK, Choi YW, Choi YH. Schisandrae Fructus inhibits IL-1beta-induced matrix metalloproteinases and inflammatory mediators production in SW1353 human chondrocytes by suppressing NF-kappaB and MAPK activation. Drug Dev Res 2015;76:474-83. https://doi.org/10.1002/ddr.21283
  25. Dilshara MG, Jayasooriya RG, Kang CH, Lee S, Park SR, Jeong JW, Choi YH, Seo YT, Jang YP, Kim GY. Downregulation of pro-inflammatory mediators by a water extract of Schisandra chinensis (Turcz.) Baill fruit in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Environ Toxicol Pharmacol 2013;36:256-64. https://doi.org/10.1016/j.etap.2013.04.005
  26. Kang JS, Han MH, Kim GY, Kim CM, Kim BW, Hwang HJ, Hyun Y. Nrf2-mediated HO-1 induction contributes to antioxidant capacity of a Schisandrae Fructus ethanol extract in C2C12 myoblasts. Nutrients 2014;6:5667-78. https://doi.org/10.3390/nu6125667
  27. Karna KK, Choi BR, Kim MJ, Kim HK, Park JK. The effect of Schisandra chinensis Baillon on cross-talk between oxidative stress, endoplasmic reticulum stress, and mitochondrial signaling pathway in testes of varicocele-induced SD rat. Int J Mol Sci 2019;20:5785. https://doi.org/10.3390/ijms20225785
  28. Jeong JW, Kim J, Choi EO, Kwon DH, Kong GM, Choi IW, Kim BH, Kim GY, Lee KW, Kim KY, Kim SG, Choi YW, Hong SH, Park C, Choi YH. Schisandrae Fructus ethanol extract ameliorates inflammatory responses and articular cartilage damage in monosodium iodoacetate-induced osteoarthritis in rats. EXCLI J 2017;16:265-77. https://doi.org/10.17179/excli2017-119
  29. Choi YH. Trans-cinnamaldehyde protects C2C12 myoblasts from DNA damage, mitochondrial dysfunction and apoptosis caused by oxidative stress through inhibiting ROS production. Genes Genomics 2021;43:303-12. https://doi.org/10.1007/s13258-020-00987-9
  30. Chae BS. Effect of low-dose corticosterone pretreatment on the production of inflammatory mediators in super-low-dose LPS-primed immune cells. Toxicol Res 2021;37:47-57. https://doi.org/10.1007/s43188-020-00051-4
  31. Park S, Kim M, Hong Y, Lee H, Tran Q, Kim C, Kwon SH, Park J, Park J, Kim SH. Myristoylated TMEM39AS41, a cell-permeable peptide, causes lung cancer cell death. Toxicol Res 2020;36:123-30. https://doi.org/10.1007/s43188-020-00038-1
  32. Park JW, Lee SJ, Kim JE, Kang MJ, Bae SJ, Choi YJ, Gong JE, Kim KS, Jung YS, Cho JY, Choi YS, Hwang DY, Song HK. Comparison of response to LPS-induced sepsis in three DBA/2 stocks derived from different sources. Lab Anim Res 2021;37:2. https://doi.org/10.1186/s42826-020-00079-5
  33. Hwangbo H, Kim SY, Lee H, Park SH, Hong SH, Park C, Kim GY, Leem SH, Hyun JW, Cheong J, Choi YH. Auranofin enhances sulforaphane-mediated apoptosis in hepatocellular carcinoma Hep3B cells through inactivation of the PI3K/Akt signaling pathway. Biomol Ther 2020;28:443-55. https://doi.org/10.4062/biomolther.2020.122
  34. Jeong JW, Cha HJ, Han MH, Hwang SJ, Lee DS, Yoo JS, Choi IW, Kim S, Kim HS, Kim GY, Hong SH, Park C, Lee HJ, Choi YH. Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish. Biomol Ther 2018;26:146-56. https://doi.org/10.4062/biomolther.2016.272
  35. Soufli I, Toumi R, Rafa H, Touil-Boukoffa C. Overview of cytokines and nitric oxide involvement in immunopathogenesis of inflammatory bowel diseases. World J Gastrointest Pharmacol Ther 2016;7:353-60. https://doi.org/10.4292/wjgpt.v7.i3.353
  36. Aleem D, Tohid H. Pro-inflammatory cytokines, biomarkers, genetics and the immune system: a mechanistic approach of depression and psoriasis. Rev Colomb Psiquiatr 2018;47:177-86. https://doi.org/10.1016/j.rcp.2017.03.002
  37. Saini R, Singh S. Inducible nitric oxide synthase: an asset to neutrophils. J Leukoc Biol 2019;105:49-61. https://doi.org/10.1002/JLB.4RU0418-161R
  38. Yao C, Narumiya S. Prostaglandin-cytokine crosstalk in chronic inflammation. Br J Pharmacol 2019;176:337-54. https://doi.org/10.1111/bph.14530
  39. Wang T, He C, Yu X. Pro-inflammatory cytokines: new potential therapeutic targets for obesity-related bone disorders. Curr Drug Targets 2017;18:1664-75.
  40. Hu F, Lou N, Jiao J, Guo F, Xiang H, Shang D. Macrophages in pancreatitis: Mechanisms and therapeutic potential. Biomed Pharmacother 2020;131:110693. https://doi.org/10.1016/j.biopha.2020.110693
  41. Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage 2020;28:555-61. https://doi.org/10.1016/j.joca.2020.01.007
  42. Jalava PI, Salonen RO, Pennanen AS, Happo MS, Penttinen P, Halinen AI, Sillanpaa M, Hillamo R, Hirvonen MR. Effects of solubility of urban air fine and coarse particles on cytotoxic and inflammatory responses in RAW 264.7 macrophage cell line. Toxicol Appl Pharmacol 2008;229:146-60. https://doi.org/10.1016/j.taap.2008.01.006
  43. Bekki K, Ito T, Yoshida Y, He C, Arashidani K, He M, Sun G, Zeng Y, Sone H, Kunugita N, Ichinose T. PM2.5 collected in China causes inflammatory and oxidative stress responses in macrophages through the multiple pathways. Environ Toxicol Pharmacol 2016;45:362-9. https://doi.org/10.1016/j.etap.2016.06.022
  44. Zhu J, Zhao Y, Gao Y, Li C, Zhou L, Qi W, Zhang Y, Ye L. Effects of different components of PM2.5 on the expression levels of NF-kappaB family gene mRNA and inflammatory molecules in human macrophage. Int J Environ Res Public Health 2019;16:1408. https://doi.org/10.3390/ijerph16081408
  45. Yin J, Xia W, Li Y, Guo C, Zhang Y, Huang S, Jia Z, Zhang A. COX-2 mediates PM2.5-induced apoptosis and inflammation in vascular endothelial cells. Am J Transl Res 2017;9:3967-76.
  46. Beck-Speier I, Kreyling WG, Maier KL, Dayal N, Schladweiler MC, Mayer P, Semmler-Behnke M, Kodavanti UP. Soluble iron modulates iron oxide particle-induced inflammatory responses via prostaglandin E2 synthesis: in vitro and in vivo studies. Part Fibre Toxicol 2009;6:34. https://doi.org/10.1186/1743-8977-6-34
  47. Migliaccio CT, Kobos E, King QO, Porter V, Jessop F, Ward T. Adverse effects of wood smoke PM2.5 exposure on macrophage functions. Inhal Toxicol 2013;25:67-76. https://doi.org/10.3109/08958378.2012.756086
  48. Li W, Cai ZN, Mehmood S, Liang LL, Liu Y, Zhang HY, Chen Y, Lu YM. Anti-inflammatory effects of Morchella esculenta polysaccharide and its derivatives in fine particulate matter-treated NR8383 cells. Int J Biol Macromol 2019;129:904-15. https://doi.org/10.1016/j.ijbiomac.2019.02.088
  49. Rigoglou S, Papavassiliou AG. The NF-κB signalling pathway in osteoarthritis. Int J Biochem Cell Biol 2013;45:2580-4. https://doi.org/10.1016/j.biocel.2013.08.018
  50. Schuliga M. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 2015;5:1266-83. https://doi.org/10.3390/biom5031266
  51. Shi Y, Batibawa JW, Maiga M, Sun B, Li Y, Duan J, Sun Z. Identification and validation of metformin protects against PM2.5-induced macrophages cytotoxicity by targeting toll like receptor pathway. Chemosphere 2020;251:126526. https://doi.org/10.1016/j.chemosphere.2020.126526
  52. Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L. Role of ROS and nutritional antioxidants in human diseases. Front Physiol 2018;9:477. https://doi.org/10.3389/fphys.2018.00477
  53. Mills EL, O'Neill LA. Reprogramming mitochondrial metabolism in macrophages as an antiinflammatory signal. Eur J Immunol 2016;46:13-21. https://doi.org/10.1002/eji.201445427
  54. Bailone RL, Fukushima HC, Ventura Fernandes BH, De Aguiar LK, Correa T, Janke H, Grejo Setti P, Roca RO, Borra RC. Zebrafish as an alternative animal model in human and animal vaccination research. Lab Anim Res 2020;36:13. https://doi.org/10.1186/s42826-020-00042-4
  55. Ren F, Huang Y, Tao Y, Ji C, Aniagu S, Jiang Y, Chen T. Resveratrol protects against PM2.5-induced heart defects in zebrafish embryos as an antioxidant rather than as an AHR antagonist. Toxicol Appl Pharmacol 2020;398:115029. https://doi.org/10.1016/j.taap.2020.115029
  56. Zhang Y, Li S, Li J, Han L, He Q, Wang R, Wang X, Liu K. Developmental toxicity induced by PM2.5 through endoplasmic reticulum stress and autophagy pathway in zebrafish embryos. Chemosphere 2018;197:611-21. https://doi.org/10.1016/j.chemosphere.2018.01.092
  57. Dai YL, Jiang YF, Lu YA, Yu JB, Kang MC, Jeon YJ. Fucoxanthin-rich fraction from Sargassum fusiformis alleviates particulate matter-induced inflammation in vitro and in vivo. Toxicol Rep 2021;8:349-58. https://doi.org/10.1016/j.toxrep.2021.02.005
  58. de Abreu MS, Giacomini AC, Genario R, Dos Santos BE, da Rosa LG, Demin KA, Wappler-Guzzetta EA, Kalueff AV. Neuropharmacology, pharmacogenetics and pharmacogenomics of aggression: the zebrafish model. Pharmacol Res 2019;141:602-8. https://doi.org/10.1016/j.phrs.2019.01.044
  59. Duan J, Yu Y, Li Y, Wang Y, Sun Z. Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[a]pyrene in zebrafish (Danio rerio) embryos. Chemosphere 2016;151:152-62. https://doi.org/10.1016/j.chemosphere.2016.02.079