• 제목/요약/키워드: Oxidation efficiency

검색결과 952건 처리시간 0.026초

DHA의 산화방지를 위한 Vitamin C/alginate Gel-entrapped Liposome의 항산화 효과 (Antioxidant Effect of Vitamin-C/alginate Gel-entrapped Liposome for Resistance of DHA Autoxidation)

  • 한성철;허은정;김연주;이기영;김진철
    • KSBB Journal
    • /
    • 제18권3호
    • /
    • pp.229-233
    • /
    • 2003
  • PC 리포솜에 최대로 포함되는 DHA의 양은 PC : DHA의 비율이 1 : 0.8인 것으로 나타났으며 이때 적재 효율은 약 91 %였고 AVDL의 경우에는 약 17 %이었다. DHA의 산화를 방지하기 위하여 vitamin C/alginate 리포솜에 병합시킬 수 있었고 TEM을 통하여 제조된 다양한 리포솜의 형태와 크기를 확인할 수 있었다. TBARS 분석법에 의해 $40^{\circ}C$에서 DHA가 포함된 PC 리포솜과 AVDL에 포함된 DHA의 산화정도를 분석하였고, 결과적으로 자연 상태에서 리포솜에 포함된 DHA는 밀도가 높아질수록 산화에 안정하며, vitamin C를 포함한 alginate gel 리포솜은 DHA의 산화를 크게 억제한다는 것을 확인하였다. AVDL은 실험에서와 같은 산화조건에서 DHA의 산화를 초기 3일까지는 거의 완전히 억제하였고 그 이후에도 항산화 효과가 크다는 것을 확인하였다.

Facile Preparation of ZnO Nanocatalysts for Ozonation of Phenol and Effects of Calcination Temperatures

  • Dong, Yuming;Zhao, Hui;Wang, Zhiliang;Wang, Guangli;He, Aizhen;Jiang, Pingping
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.215-220
    • /
    • 2012
  • ZnO nanoparticles were synthesized through a facile route and were used as ozonation catalysts. With the increase of calcination temperature ($150-300^{\circ}C$), surface hydroxyl groups and catalytic efficiency of asobtained ZnO decreased remarkably, and the ZnO obtained at $150^{\circ}C$ showed the best catalytic activity. Compared with ozonation alone, the degradation efficiency of phenol increased above 50% due to the catalysis of ZnO-150. In the reaction temperatures range from $5^{\circ}C$ to $35^{\circ}C$, ZnO nanocatalyst revealed remarkable catalytic properties, and the catalytic effect of ZnO was better at lower temperature. Through the effect of tertbutanol on degradation of phenol and the catalytic properties of ZnO on degradation of nitrobenzene, it was proposed that the degradation of phenol was ascribed to the direct oxidation by ozone molecules based on solidliquid interface reaction.

중소형 선박의 $SO_X/NO_X$ 동시제거를 위한 습식세정시스템 (Simultaneous removal of $SO_X$ and $NO_X$ by wet scrubber at small and medium craft)

  • 차유정;이주열;하태영;박병현
    • 한국응용과학기술학회지
    • /
    • 제31권1호
    • /
    • pp.159-166
    • /
    • 2014
  • In recent years, researchers have put a considerable effort to decrease the emission of harmful gaseous pollutants to the atmosphere. In order to remove simultaneously $SO_2$ and $NO_X$ from the flue gas of small and medium-sized ship, we designed minimal wet scrubber inside a compact multistage modular system. In this study we proceed experiment of elemental technology at each stage of the scrubber. The each stage is oxidation of NO which is the main component of $NO_X$, and removal of $SO_2$, respectively. $NaClO_2$ was used to oxidize NO gas, and NaOH was used to remove $SO_2$ gas. The maximum NO conversion efficiency and the $SO_2$ removal efficiency are both indicate 100%.

나노입자 이산화티타늄 전극 기반의 고효율 전기화학형 발광 셀 제작 (Fabrication of High-Efficiency Electrochemiluminescence Cell with Nanocrystalline TiO2 Electrode)

  • 권혁문;한치환;성열문
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.363-368
    • /
    • 2010
  • In this work, electrochemiluminescence (ECL) cell using nanocrysralline $TiO_2$ electrode and Ru(II) complex (Ru${(bpy)_3}^{2+}$) is fabricated for low-cost high-efficient energy conversion device application. The nanocrysrallme $TiO_2$ layer (${\sim}10{\mu}m$ thickness) with large surface area (${\sim}360m^2$/g) can largely inject electrons from nanoporous $TiO_2$ electrode and allows the oxidation/reduction of Ru(II) complex in the nanopores. The cell structure is composed of a glass/ F-doped $SnO_2$(FTO)/ porous $TiO_2$/ Ru(II) complex in acetonitrile/ FTO/ glass. The nanocrysralline $TiO_2$ layer is prepared using sol-gel combustion method. The ECL efficiency of the cell consisting of the porous $TiO_2$ layers was 250 cd/W, which was higher than that consisting of only FTO electrode (50cd/W). The nanoporous $TiO_2$ layers wwas effective for increasine ECL intensities.

결정질 실리콘 태양전지에서 도금을 이용한 전극 형성 시 발생되는 레이저 손상 제거 (Removal of Laser Damage in Electrode Formed by Plating in Crystalline Silicon Solar Cells)

  • 정명상;강민구;이정인;송희은
    • 한국전기전자재료학회논문지
    • /
    • 제29권6호
    • /
    • pp.370-375
    • /
    • 2016
  • In this paper, we investigated the electrical properties of crystalline silicon solar cell fabricated with Ni/Cu/Ag plating. The laser process was used to ablate silicon nitride layer as well as to form the selective emitter. Phosphoric acid layer was spin-coated to prevent damage caused by laser and formed selective emitter during laser process. As a result, the contact resistance was decreased by lower sheet resistance in electrode region. Low sheet resistance was obtained by increasing laser current, but efficiency and open circuit voltage were decreased by damage on the wafer surface. KOH treatment was used to remove the laser damage on the silicon surface prior to metalization of the front electrode by Ni/Cu/Ag plating. Ni and Cu were plated for each 4 minutes and 16 minutes and very thin layer of Ag with $1{\mu}m$ thickness was plated onto Ni/Cu electrode for 30 seconds to prevent oxidation of the electrode. The silicon solar cells with KOH treatment showed the 0.2% improved efficiency compared to those without treatment.

Hydrogen Sulfide Removal by Immobilized Thiobacillus novellas on $SiO_2$ in a Fluidized Bed Reactor

  • Cha, Jin-Myung;Shin, Hyun-Jae;Roh, Sung-Hee;Kim, Sun-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.320-324
    • /
    • 2007
  • The removal of hydrogen sulfide ($H_2S$) from aqueous media was investigated using Thiobacillus novellas cells immobilized on a $SiO_2$ carrier (biosand). The optimal growth conditions for the bacterial strain were $30^{\circ}C$ and initial pH of 7.0. The main product of hydrogen sulfide oxidation by T. novellus was identified as the sulfate ion. A removal efficiency of 98% was maintained in the three-phase fluidized-bed reactor, whereas the efficiency was reduced to 90% for the two-phase fluidized-bed reactor and 68% for the two-phase reactor without cells. The maximum gas removal capacity for the system was 254 g $H_2S/m^3/h$ when the inlet $H_2S$ loading was $300g/m^3/h(1,500ppm)$. Stable operation of the immobilized reactor was possible for 20 days with the inlet $H_2S$ concentration held to 1,100 ppm. The fluidized bed bioreactor appeared to be an effective means for controlling hydrogen sulfide emissions.

Numerical simulation of a regenerative thermal oxidizer for volatile organic compounds treatment

  • Hao, Xiaowen;Li, Ruixin;Wang, Jiao;Yang, Xinfei
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.397-405
    • /
    • 2018
  • As regulations governing the control of volatile organic compounds (VOCs) have become increasingly stringent in China, regenerative thermal oxidizers (RTOs) have been more frequently applied in medium- and high-concentration VOCs treatments. However, due to the lack of existing RTO-related research, experience remains a dominant factor for industrial application. This paper thus aimed to establish a model for industrial RTOs, using a transient simulation method and thermal equilibrium model to simulate the internal velocities and temperature distributions of an RTO across multiple cycles. A comparison showed an error of less than 5% between most correlating simulated and experimental measurement points, verifying that the simulation method was accurate. After verification, the velocity and temperature fields inside the RTO were simulated to study the uniformity of temperature and velocity within the packed beds: both fields displayed high uniformity after gas flowed through the honeycomb regenerator. The effects of air volume, VOCs concentrations, and valve switching times on the oxidation chamber temperature, RTO outlet temperature, and thermal efficiency (as well as their averages) were studied. The VOCs removal rate in this study was constantly above 98%, and the average thermal efficiency reached 90%.

Hydrophobicity in nanocatalysis

  • Alimoradlu, Khadijeh;Zamani, Asghar
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.49-63
    • /
    • 2022
  • Nanocatalysts are usually used in the synthesis of petrochemical products, fine chemicals, biofuel production, and automotive exhaust catalysis. Due to high activity and stability, recyclability, and cost-effectiveness, nanocatalysts are a key area in green chemistry. On the other hand, water as a common by-product or undesired element in a range of nanocatalyzed processes may be promoting the deactivation of catalytic systems. The advancement in the field of hydrophobicity in nanocatalysis could relatively solves these problems and improves the efficiency and recyclability of nanocatalysts. Some recent developments in the synthesis of novel nanocatalysts with tunable hydrophilic-hydrophobic character have been reviewed in this article and followed by highlighting their use in catalyzing several processes such as glycerolysis, Fenton, oxidation, reduction, ketalization, and hydrodesulfurization. Zeolites, carbon materials, modified silicas, surfactant-ligands, and polymers are the basic components in the controlling hydrophobicity of new nanocatalysts. Various characterization methods such as N2 adsorption-desorption, scanning and transmission electron microscopy, and contact angle measurement are critical in the understanding of hydrophobicity of materials. Also, in this review, it has been shown that how the hydrophobicity of nanocatalyst is affected by its structure, textural properties, and surface acidity, and discuss the important factors in designing catalysts with high efficiency and recyclability. It is useful for chemists and chemical engineers who are concerned with designing novel types of nanocatalysts with high activity and recyclability for environmentally friendly applications.

자외선 광을 활용하는 화학기계적 연마에 관한 연구 동향 (Research Trends on Chemical Mechanical Polishing Using Ultraviolet Light)

  • 이현섭
    • Tribology and Lubricants
    • /
    • 제38권6호
    • /
    • pp.247-254
    • /
    • 2022
  • Chemical mechanical polishing (CMP) is a hybrid surface-polishing process that utilizes both mechanical and chemical energy. However, the recently emerging semiconductor substrate and thin film materials are challenging to process using the existing CMP. Therefore, previous researchers have conducted studies to increase the material removal rate (MRR) of CMP. Most materials studied to improve MRR have high hardness and chemical stability. Methods for enhancing the material removal efficiency of CMP include additional provision of electric, thermal, light, mechanical, and chemical energies. This study aims to introduce research trends on CMP using ultraviolet (UV) light to these methods to improve the material removal efficiency of CMP. This method, photocatalysis-assisted chemical mechanical polishing (PCMP), utilizes photocatalytic oxidation using UV light. In this study, the target materials of the PCMP application include SiC, GaN, GaAs, and Ru. This study explains the photocatalytic reaction, which is the basic principle of PCMP, and reviews studies on PCMP according to materials. Additionally, the researchers classified the PCMP system used in existing studies and presented the course for further investigation of PCMP. This study aims to aid in understanding PCMP and set the direction of future research. Lastly, since there have not been many studies on the tribology characteristics in PCMP, research on this is expected to be required.

Effects of Dietary Levels of Glycine, Threonine and Protein on Threonine Efficiency and Threonine Dehydrogenase Activity in Hepatic Mitochondria of Chicks

  • Lee, C.W.;Cho, I.J.;Lee, Y.J.;Son, Y.S.;Kwak, I.;Ahn, Y.T.;Kim, S.C.;An, W.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권1호
    • /
    • pp.69-76
    • /
    • 2014
  • This study was carried out to evaluate the relationship between threonine (Thr) efficiency and Thr dehydrogenase (TDG) activity as an indicator of Thr oxidation on chicks fed with levels of diets (CP [17.5% and 21.5%] and Thr [3.8 and 4.7 g/100 g CP]; glycine [Gly][0.64% and 0.98%] and true digestible Thr [dThr] [0.45% and 0.60%]). Calculation of the Thr efficiency was based on N-balance data and an exponential N-utilization model, and TDG activity was determined as accumulation of aminoacetone and Gly during incubation of hepatic mitochondria. This study found that in the liver of chicks who received a diet containing up to 0.79% Thr (4.7 g Thr/100 g of CP) in the 17.5% CP diet, no significant (p>0.05) effect on TDG activity was observed. However, significantly (p = 0.014) increased TDG activity was observed with a diet containing 21.5% CP (4.7 g Thr/100 g of CP) and the efficiency of Thr utilization showed a significant (p = 0.001) decrease, indicating the end of the Thr limiting range. No significant (p>0.05) effect on the total TDG activity and accumulation of Gly was observed with addition of Gly to a diet containing 0.45% dThr. In addition, addition of Gly to a diet containing 0.60% dThr also did not result in a change in accumulation of Gly. Due to an increase in accumulation of aminoacetone, an elevated effect on total TDG activity was also observed. No significant (p>0.05) reduction in the efficiency of Thr utilization was observed after addition of Gly at the level of 0.45% dThr. However, significantly (p<0.001) reduced efficiency of Thr utilization was observed after addition of Gly at the level of 0.60% dThr. Collectively, we found that TDG was stimulated not only by addition of Thr and protein to the diet, but also by addition of Gly, and efficiency of Thr utilization was favorably affected by addition of Gly at the level near to the optimal Thr concentration. In addition, no metabolic requirement of Gly through the TDG pathway was observed with almost the same accumulation of Gly and a slight increase in TDG activity by addition of Gly. Thus, our findings suggest that determination of TDG activity and parameter of efficiency of Thr utilization may be useful for evaluation of dietary Thr level.