Browse > Article
http://dx.doi.org/10.12989/anr.2022.12.1.049

Hydrophobicity in nanocatalysis  

Alimoradlu, Khadijeh (Nanotechnology Research Center, Urmia University)
Zamani, Asghar (Department of Nanotechnology, Faculty of Science, Urmia University)
Publication Information
Advances in nano research / v.12, no.1, 2022 , pp. 49-63 More about this Journal
Abstract
Nanocatalysts are usually used in the synthesis of petrochemical products, fine chemicals, biofuel production, and automotive exhaust catalysis. Due to high activity and stability, recyclability, and cost-effectiveness, nanocatalysts are a key area in green chemistry. On the other hand, water as a common by-product or undesired element in a range of nanocatalyzed processes may be promoting the deactivation of catalytic systems. The advancement in the field of hydrophobicity in nanocatalysis could relatively solves these problems and improves the efficiency and recyclability of nanocatalysts. Some recent developments in the synthesis of novel nanocatalysts with tunable hydrophilic-hydrophobic character have been reviewed in this article and followed by highlighting their use in catalyzing several processes such as glycerolysis, Fenton, oxidation, reduction, ketalization, and hydrodesulfurization. Zeolites, carbon materials, modified silicas, surfactant-ligands, and polymers are the basic components in the controlling hydrophobicity of new nanocatalysts. Various characterization methods such as N2 adsorption-desorption, scanning and transmission electron microscopy, and contact angle measurement are critical in the understanding of hydrophobicity of materials. Also, in this review, it has been shown that how the hydrophobicity of nanocatalyst is affected by its structure, textural properties, and surface acidity, and discuss the important factors in designing catalysts with high efficiency and recyclability. It is useful for chemists and chemical engineers who are concerned with designing novel types of nanocatalysts with high activity and recyclability for environmentally friendly applications.
Keywords
carbon material; hydrophobicity; nanocatalyst; silica; zeolite;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Wang, B., Xu, H., Zhu, Z., Guan, Y. and Wu, P. (2019a) "Ultrafast synthesis of nanosized ti-beta via structural reconstruction method as efficient oxidation catalyst", Catal. Sci. Technol., 9, 1857-1866. https://doi.org/10.1039/C9CY00071B.   DOI
2 Wang, W., Zhou, W., Li, W., Xiong, X., Wang, Y., Cheng, K., Kang, J., Zhang, Q. and Wang, Y. (2020) "In-situ confinement of ultrasmall palladium nanoparticles in silicalite-1 for methane combustion with excellent activity and hydrothermal stability", Appl. Catal. B, 276, 119142. https://doi.org/10.1016/j.apcatb.2020.119142.   DOI
3 Wolf, M., Fischer, N. and Claeys, M. (2020), "Water-induced deactivation of cobalt-based Fischer-Tropsch catalysts", Nat. Catal., 3, 962-965. https://doi.org/10.1038/s41929-020-00534-5.   DOI
4 Xu, Y., Li, X., Gao, J., Wang, J., Ma, G., Wen, X., Yang, Y., Li, Y. and Ding, M. "A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products", Science, 371, 610-613. https://doi.org/10.1126/science.abb3649.   DOI
5 Yu, X., Zhang, J., Wang, X., Ma, Q., Gao, X., Xia, H., Lai, X., Fan, S. and Zhao, T.S. (2018) "Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity", Appl. Catal. B, 232, 420-428. https://doi.org/10.1016/j.apcatb.2018.03.048.   DOI
6 Trung, B.C., Tu, L.N.Q., Tri, N.T.M., An, N.T. and Long, N.Q. (2021) "Granular-carbon supported nano noble-metal (Au, Pd, Au-Pd): New dual-functional adsorbent/catalysts for effective removal of toluene at low-temperature and humid condition", Environ. Technol., 42(11), 1772-1786. https://doi.org/10.1080/09593330.2019.1680742.   DOI
7 Wu, Y., Wang, H., Guo, S., Zeng, Y. and Ding, M. (2021) "MOFs-induced high-amphiphilicity in hierarchical 3D reduced graphene oxide-based hydrogel", Appl. Surf. Sci., 540, 148303. https://doi.org/10.1016/j.apsusc.2020.148303.   DOI
8 Jiang, J., Wang, S., Kong, Y., Yan, W., Chen, H., Liu, L., Chang, W. and Li, J. (2020) "Well-defined core-shell nanostructural block copolymer supported recyclable Bronsted acidic ionic liquid catalyst for the synthesis of biodiesel", Eur. Polym. J., 140, 109922. http://doi.org/10.1016/j.eurpolymj.2020.109922.   DOI
9 Li, S., Zhou, H., Xiao, L., Fan, J. and Zheng, X. (2019), "Fabrication of super-hydrophobic titanosilicate sub-micro sphere with enhanced epoxidation catalytic activity", Catal. Lett., 149, 1396-1402. https://doi.org/10.1007/s10562-019-02720-y.   DOI
10 Yuce, M.Y., Demirel, A.L. and Menzel, F. (2005) "Tuning the surface hydrophobicity of polymer/ nanoparticle composite films in the wenzel regime by composition", Langmuir, 21, 5073-5078. https://doi.org/10.1021/la050033y.   DOI
11 Yuce, M.Y. and Demirel, A.L. (2008) "The effect of nanoparticles on the surface hydrophobicity of polystyrene", Eur. Phys. J. B, 64, 493-497. https://doi.org/10.1140/epjb/e2008-00042-0.   DOI
12 Zamani, A., Poursattar Marjani, A., Nikoo, A., Heidarpoura, M. and Dehghan, A. (2018a) "Synthesis and characterization of copper nanoparticles on walnut shell for catalytic reduction and C-C coupling reaction", Inorg. Nano-Metal Chem., 48(3), 176-181. https://doi.org/10.1080/24701556.2018.1503676.   DOI
13 Wang, H., Fang, L., Yang, Y., Zhang, L. and Wang, Y. (2016) "H5PMo10V2O40 immobilized on functionalized chloromethylated polystyrene by electrostatic interactions: a highly efficient and recyclable heterogeneous catalyst for hydroxylation of benzene", Catal. Sci. Technol., 6, 8005-8015. https://doi.org/10.1039/C6CY01270A.   DOI
14 Li, D., Lu, G. and Cai, C. (2020) "Modified cellulose with tunable surface hydrophilicity/hydrophobicity as a novel catalyst support for selective reduction of nitrobenzene", Catal. Commun., 137, 105949. https://doi.org/10.1016/j.catcom.2020.105949.   DOI
15 Li, Y.X., Shen, J.X., Peng, S.S., Zhang, J.K., Wu, J., Liu, X.Q. and Sun, L.B. (2020) "Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization", Nat. Commun., 11, 3206. https://doi.org/10.1038/s41467-020-17042-6.   DOI
16 Evgeny, K. (2020), Magnetic Nanoparticles, MDPI, Basel, Switzerland.
17 Jain, Y., Kumari, M., Agarwal, M. and Gupta, R. (2019) "Robust synthesis of sugar-coumarin based fluorescent 1,4-disubstituted-1,2, 3-triazoles using highly efficient recyclable citrate grafted β-cyclodextrin@magnetite nano phase transfer catalyst in aqueous media", Carbohydr. Res., 482, 107736. https://doi.org/10.1016/j.carres.2019.06.015.   DOI
18 Calvino-Casilda, V., Lopez-Peinado, A.J., Martin-Aranda, R.M. and Mayoral, E.P. (2019), Nanocatalysis: Applications and Technologies, CRC Press.
19 Gholamian, F. and Hajjami, M. (2019), "Functionalization of hexagonal mesoporous silicas (HMS) for the synthesis of efficient catalyst and investigation of its catalytic activity in the synthesis of 1-amidoalkyl-2-naphthols and 2-substituted benzimidazoles", Reac. Kinet. Mech. Cat. 128, 867-884. https://doi.org/10.1007/s11144-019-01663-0.   DOI
20 Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015) "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano Res., 3(2), 111-121. http://doi.org/10.12989/anr.2015.3.2.111.   DOI
21 Hagen, J. (2015), Industrial Catalysis: A Practical Approach, (3rd Edition), Wiley-VCH, Weinheim, Germany.
22 Hao, Y., Jiao, X., Zou, H., Yang, H. and Liu, J. (2017), "Growing a hydrophilic nanoporous shell on a hydrophobic catalyst interface for aqueous reactions with high reaction efficiency and in situ catalyst recycling", J. Mater. Chem. A, 5, 16162-16170. https://doi.org/10.1039/C6TA11124F.   DOI
23 Auepattana-aumrung, C., Marquez, V., Wannakao, S., Jongsomjit, B., Panpranot, J. and Praserthdam, P. (2020), "Role of Al in Na-ZSM-5 zeolite structure on catalyst stability in butene cracking reaction", 10, 13643. https://doi.org/10.1038/s41598-020-70568.
24 Aviles, M.D., Pamies, R., Sanes, J. and Bermudez, M.D. (2020), "Graphene-ionic liquid thin film nanolubricant", Nanomaterials, 10(3), 535. https://doi.org/10.3390/nano10030535.   DOI
25 Ballotin, F.C., da Silva, M.J., Teixeira, A.P.C. and Lago, R.M. (2020) "Amphiphilic acid carbon catalysts produced by bio-oil sulfonation for solvent-free glycerol ketalization", Fuel, 274, 117799. https://doi.org/10.1016/j.fuel.2020.117799.   DOI
26 Benvenuto, M.A. and Plaumann, H. (2021), Industrial Catalysis, De Gruyter, Berlin, Germany.
27 Blin, J.L., Riachy, P., Carteret, C. and Lebeau, B. (2019), "Thermal and hydrothermal stability of hierarchical porous silica materials", Eur. J. Inorg. Chem., 3194-3202. https://doi.org/10.1002/ejic.201900228.   DOI
28 Rodrigues, R.C., Virgen-Ortiz, J.J., Dos Santos, J.C.S., Berenguer-Murcia, A., Alcantara, A., Barbosa, O., Ortiz, C. and Fernandez-Lafuente, R. (2019) "Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions", Biotechnol. Adv., 37, 746-770. https://doi.org/10.1016/j.biotechadv.2019.04.003.   DOI
29 Rodrigues, T.S., da Silva, A.G.M. and Camargo, P.H.C. (2019), "Nanocatalysis by noble metal nanoparticles: Controlled synthesis for the optimization and understanding of activities", J. Mater. Chem. A, 7, 5857-5874. https://doi.org/10.1039/C9TA00074G.   DOI
30 Tan, M., Tian, S., Zhang, T., Wang, K., Xiao, L., Liang, J., Ma, Q., Yang, G., Tsubaki, N. and Tan, Y. "Probing hydrophobization of a cu/zno catalyst for suppression of water-gas shift reaction in syngas conversion", ACS Catal., 11, 4633-4643. https://doi.org/10.1021/acscatal.0c05585.   DOI
31 Harrison, A. and Tang, C. (2021) "Amphiphilic polymer nanoreactors for multiple step, one-pot reactions and spontaneous product separation", Polymers, 13(12), 1992. https://doi.org/10.3390/polym13121992.   DOI
32 Saenz-Galindo, A., Facio, A.O.C. and Rodriguez-Herrera, R. (2020), Green Chemistry and Applications, CRC Press.
33 Singh, B., Na, J., Konarova, M., Wakihara, T., Yamauchi, Y., Salomon, C. and Gawande, M.B. (2020), "Functional mesoporous silica nanomaterials for catalysis and environmental applications", Bull. Chem. Soc. Jpn., 93(12), 1459-1496. https://doi.org/10.1246/bcsj.20200136.   DOI
34 Szelwicka, A., Kolanowska, A., Latos, Jurczyk, Boncel, P.S.S. and Chrobok, A. (2020) "Carbon nanotube/PTFE as a hybrid platform for lipase B from Candida antarctica in transformation of α-angelica lactone to alkyl levulinates", Catal. Sci. Technol., 10, 3255-3264. https://doi.org/10.1039/D0CY00545B.   DOI
35 Bukhtiyarova, M.V. and Echevsky, G.V. (2019), "Modern research in the field of zeolites and zeolite-like materials: A review of the works of the boreskov institute of catalysis, siberian branch, russian academy of sciences", Pet. Chem., 59, 802-821. https://doi.org/10.1134/S0965544119080048.   DOI
36 Cavuoto, D., Zaccheria, F. and Ravasio, N. (2020), "Some critical insights into the synthesis and applications of hydrophobic solid catalysts", Catalysts, 10, 1337. https://doi.org/10.3390/catal10111337.   DOI
37 Chen, M., Wu, H., Li, Z., Wu, K., Jiao, Y. and Zhou, C. (2020) "Preparation of reduced graphene oxide porous beads for lipase immobilization and its application for oil adsorption and glycerolysis reaction in situ", Micropor. Mesopor. Mat., 294, 109920. https://doi.org/10.1016/j.micromeso.2019.109920.   DOI
38 Zamani, A., Poursattar Marjani, A. and Alimoradlu, K. (2018b) "Walnut shell-templated ceria nanoparticles: green synthesis, characterization and catalytic application", Int. J. Nanosci., 17(6), 1850008. https://doi.org/10.1142/S0219581X18500084.   DOI
39 Bonrath, W., Medlock, J., Muller, M. and Schutz, J. (2021), Catalysis for Fine Chemicals, De Gruyter, Berlin, Germany.
40 Minh, N.T., Thanh, L.D., Trung, B.C., An, N.T. and Long, N.Q. (2018) "Dual functional adsorbent/catalyst of nano-gold/metal oxides supported on carbon grain for low-temperature removal of toluene in the presence of water vapor", Clean. Technol. Environ. Policy, 20, 1861-1873. https://doi.org/10.1007/s10098-018-1583-6.   DOI
41 Liu, F., Huang, K., Zheng, A., Xiao, F.S. and Dai, S. (2018), "Hydrophobic solid acids and their catalytic applications in green and sustainable chemistry", Catalysis, ACS Catal., 8(1), 372-391. https://doi.org/10.1021/acscatal.7b03369.   DOI
42 Macina, D., Opiola, A., Rutkowska, M., Basag, S., Piwowarska, Z., Michalik, M. and Chmielarz, L. (2017), "Mesoporous silica materials modified with aggregated transition metal species (Cr, Fe and Cr-Fe) in the role of catalysts for selective catalytic oxidation of ammonia to dinitrogen", Mater. Chem. Phys., 187, 60-71. https://doi.org/10.1016/j.matchemphys.2016.11.047.   DOI
43 Manoel, E.A., Dos Santos, J.C., Freire, D.M., Rueda, N. and Fernandez-Lafuente, R. (2015) "Immobilization of lipases on hydrophobic supports involves the open form of the Enzyme", Enzym. Microb. Technol., 71, 53-57. https://doi.org/10.1016/j.enzmictec.2015.02.001.   DOI
44 Zamani, A., Poursattar Marjani, A. and Abedi Mehmandar, M. (2019b) "Synthesis of high surface area magnesia by using walnut shell as a template", Green Proc. Synth., 8, 199-206. https://doi.org/10.1515/gps-2018-0066.   DOI
45 Zamani A., Poursattar Marjani A., Abdollahpour N., (2019c) "Synthesis of high surface area boehmite and alumina by using walnut shell as template", Int. J. Nano Biomater., 8(1), 1-14. https://doi.org/10.1504/IJNBM.2019.097588.   DOI
46 Zhang, Y., Liu, F., Yang, Z., Qian, J. and Pan, B. (2020) "Weakly hydrophobic nanoconfinement by graphene aerogels greatly enhances the reactivity and ambient stability of reactivity of MIL-101-Fe in Fenton-like reaction", Nano Res., 14(7), 2383-2389. https://doi.org/10.1007/s12274-020-3239-1.   DOI
47 Prasnikar, A., Pavlisic, A., Ruiz-Zepeda, F., Kovac, J. and Likozar, B. (2019), "Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol", Ind. Eng. Chem. Res., 58(29), 13021-13029. https://doi.org/10.1021/acs.iecr.9b01898.   DOI
48 McNamara, C.A., Dixon, M.J. and Bradley, M. (2002) "Recoverable catalysts and reagents using recyclable polystyrene-based supports", Chem. Rev., 102(10), 3275-3300. https://doi.org/10.1021/cr0103571.   DOI
49 Mousavi, Z., Pourgholam, B., Zamani, A. and Abtahi Froushani, S.M. (2020) "Green, lipophilic and recyclable catalysts for the aerobic oxidation of alcohols", Inorg. Nano-Metal Chem., 50(7), 508-514. https://doi.org/10.1080/24701556.2020.1720727.   DOI
50 O zturk, B.O ., Durmus, B. and Sehitoglu, S.K. (2018) "Olefin metathesis in air using latent ruthenium catalysts:Iimidazole substituted amphiphilic hydrogenated romp polymers providing nano-sized reaction spaces in water", Catal. Sci. Technol., 8, 5807-5815. https://doi.org/10.1039/C8CY01818A.   DOI
51 Oozeerally, R., Burnett, D.L., Chamberlain, T.W., Kashtiban, R.J., Huband, S., Walton, R.I. and Degirmenci, V. (2021) "Systematic modification of uio-66 metal-organic frameworks for glucose conversion into 5-hydroxymethyl furfural in water", ChemCatChem, 13, 2517-2529. https://doi.org/10.1002/cctc.202001989.   DOI
52 Tanev, P.T. and Pinnavaia, T.J. (1995), "A neutral templating route to mesoporous molecular sieves", Science, 267, 865-867. https://doi.org/10.1126/science.267.5199.865.   DOI
53 Trung, B.C., Tu, L.N.Q., Thanh, L.D., Dung, N.V. An, N.T. and Long, N.Q. (2020) "Combined adsorption and catalytic oxidation for low-temperature toluene removal using nano-sized noble metal supported on ceria-granular carbon", J. Environ. Chem. Eng., 8(2), 103546. https://doi.org/10.1016/j.jece.2019.103546.   DOI
54 Beeckman, J.W.L. (2020), Catalyst Engineering Technology: Fundamentals and Applications, Wiley, Weinheim, Germany.
55 Hu, H., Zhang, H.X., Chen, Y., Chen, Y.J., Zhuang, L. and Ou, H. S. (2019) "Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate: Effect of irradiation wavelength and real water matrixes", Chem. Eng. J., 368, 273-284. https://doi.org/10.1016/j.cej.2019.02.190.   DOI
56 Wu, Q., Peng, J., Kong, W. and Zou, Y. (2017) "Super-hydrophobic, stable, and swelling nanoporous solid strong acid", Kinet. Catal., 58(6) 816-824. https://doi.org/10.1134/S0023158417060131.   DOI
57 Rashed, M.N. and Palanisamy, P.N. (2018), Zeolites and Their Applications, IntechOpen Ltd, London, U.K.
58 Kamel, S. and Khattab, T. (2021) "Recent advances in cellulose supported metal nanoparticles as green and sustainable catalysis for organic synthesis", Cellulose, 28, 4545-4574. https://doi.org/10.1007/s10570-021-03839-1.   DOI
59 Kazemnejadi, M., Nasseri, M.A., Sheikh, S., Rezazadeha, Z. and Alavi Gol, S.A. (2021) "Fe3O4@Sap/Cu(II): An efficient magnetically recoverable green nanocatalyst for the preparation of acridine and quinazoline derivatives in aqueous media at room temperature", RSC Adv., 11, 15989-16003. https://doi.org/10.1039/d1ra01373d.   DOI
60 Wang, J.C. Li, Y., Li, H., Cui, Z.H., Hou, Y., Shi, W., Jiang, K., Qu, L. and Zhang, Y.P. (2019b) "A novel synthesis of oleophylic Fe2O3/polystyrene fibers by γ-Ray irradiation for the enhanced photocatalysis of 4-chlorophenol and 4-nitrophenol degradation", J. Hazard. Mater., 379, 120806. https://doi.org/10.1016/j.jhazmat.2019.120806.   DOI
61 Ince, O.K., Aydogdu, B., Alp, H. and Ince, M. (2021) "Experimental design approach for ultra-fast nickel removal by novel bio bio-nanocomposite material", Adv. Nano Res., 10(1), 77-90. https://doi.org/10.12989/anr.2021.10.1.077.   DOI
62 Jadhav, S.A., Miletto, I., Brunella, V., Berlier, G. and Scalarone, D. (2015), "Controlled post-synthesis grafting of thermoresponsive poly (Nisopropylacrylamide) on mesoporous silica nanoparticles", Polym. Adv. Technol., 26, 1070-1075. https://doi.org/10.1002/pat.3534.   DOI
63 Javed, M., Zhang, G., Gao, W., Cao, Y., Dai, P., Ji, X., Lu, C., Yang, R., Xing, C. and Sun, J. (2019) "From hydrophilic to hydrophobic: A promising approach to tackle high CO2 selectivity of Fe-based Fischer-Tropsch microcapsule catalysts", Catal. Today, 330, 39-45. https://doi.org/10.1016/j.cattod.2018.08.010.   DOI
64 Jeong, Y., Tonga, G.Y., Duncan, B., Yan, B., Das, R., Sahub, C. and Rotello, V.M. (2017) "Solubilization of hydrophobic catalysts using nanoparticle hosts", Small, 14(7), 1702198. https://doi.org/10.1002/smll.201702198.   DOI
65 Jin, Z., Wang, L., Hu, Q., Zhang, L., Xu, S., Dong, X., Gao, X., Ma, R., Meng, X., and F.S. Xiao (2018) "Hydrophobic zeolite containing titania particles as wettability-selective catalyst for formaldehyde removal", ACS Catal., 8(6), 5250-5254. https://doi.org/10.1021/acscatal.8b00732.   DOI
66 Lai, B., Huang, Z., Jia, Z., Bai, R. and Gu, Y. (2016), "Silica-supported metal acetylacetonate catalysts with a robust and flexible linker constructed by using 2-butoxy-3,4-dihydropyrans as dual anchoring reagents and ligand donors", Catal. Sci. Technol., 6, 1810-1820. https://doi.org/10.1039/C5CY01012H.   DOI
67 Lamonier, J.F. (2016), Catalytic Removal of Volatile Organic Compounds, MDPI, Basel, Switzerland.
68 Lei, Y., Chen, Z., Lan, G., Wang, R. and Zhou, X.Y. (2020) "Pd nanoparticles stabilized by phosphine-functionalized porous ionic polymer for efficient catalytic hydrogenation of nitroarenes in water", New J. Chem., 44, 3681-3689. https://doi.org/10.1039/C9NJ05734J.   DOI
69 Dandan, L., Hai-Qun, X., Long, J. and Hai-Long, J. (2019) "Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities", EnergyChem, 1(1), 100005. https://doi.org/10.1016/j.enchem.2019.100005.   DOI
70 Jin, Z., Wang, L., Zuidema, E., Mondal, K., Zhang, M., Zhang, J., Wang, C., Meng, X., Yang, H., Mesters, C. and Xiao, F.S. (2020) "Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol", Science, 367, 193-197. http://doi.org/10.1126/science.aaw1108.   DOI
71 Cruz, P., Fajardo, M., Hierro, I. and Perez, Y. (2018), "Selective oxidation of thioanisole by titanium complexes immobilized on mesoporous silica nanoparticles: elucidating the environment of titanium(IV) species", Catal. Sci. Technol., 9, 620-633. https://doi.org/10.1039/c8cy01929k.   DOI
72 Dinh, V.T., Thu, P.A., An, N.T. Nhan, D.N.T. and Long, N.Q. (2018) "Toluene removal under humid conditions by synergistic adsorption-photocatalysis using nano TiO2 supported on ZSM-5 synthesized from rice-husk without structure-directing agent", React. Kinet. Mech. Cat., 125, 1039-1054. https://doi.org/10.1007/s11144-018-1452-7.   DOI
73 Esmaeilnezhad, E., Karimian, M. and Choi, H.J. (2019) "Synthesis and thermal analysis of hydrophobic iron oxide nanoparticles for improving in-situ combustion efficiency of heavy oils", J. Ind. Eng. Chem., 71, 402-409. https://doi.org/10.1016/j.jiec.2018.11.052.   DOI
74 Fawaz, E.G., Salam, D.A., Pinard, L. and Daou, T.J. (2019) "Study on the catalytic performance of different crystal morphologies of HZSM-5 zeolites for the production of biodiesel: a strategy to increase catalyst effectiveness", Catal. Sci. Technol., 9, 5456-5471. https://doi.org/10.1039/c9cy01427f.   DOI
75 Guo, W., Niu, S., Shi, W., Zhang, B., Yu, W., Xie, Y., Ji, X., Wu, Y., Su, D. and Shao, L. (2018) "Pd-P nanoalloys supported on porous carbon frame as efficient catalyst for benzyl alcohol oxidation", Catal. Sci. Technol., 8, 2333-2339. https://doi.org/10.1039/C8CY00554K.   DOI
76 Zamani, A., Poursattar Marjani, A. and Mousavi, Z. (2019a) "Agricultural waste biomass-assisted nanostructures: Synthesis and application", Green Proc. Synth., 8, 421-429. https://doi.org/10.1515/gps-2019-0010.   DOI
77 Adel Niaei, H. and Rostamizadeh, M. (2020) "Adsorption and electro-Fenton processes over FeZSM-5 nano -zeolite for tetracycline removal from wastewater", Adv. Nano Res., 9(3), 173-181. https://doi.org/10.12989/anr.2020.9.3.173.   DOI
78 Gayubo, A.G., Aguayo, A.T., Moran, A.L., Olazar, M. and Bilbao, J. (2002), "Role of water in the kinetic modeling of catalyst deactivation in the MTG process", AIChE J., 48(7), 1561-1571. https://doi.org/10.1002/aic.690480718.   DOI
79 Gholami, R., Alyani, M . and Smith, K.J. (2015), "Deactivation of pd catalysts by water during low temperature methane oxidation relevant to natural gas vehicle converters", Catalysts, 5(2), 561-594. https://doi.org/10.3390/catal5020561.   DOI
80 Zhang, H.J., Cheng, Y., Yuan, H. Wang, Y. and Ma, Z.H. (2017), "An enhanced nonpolarity effect of silica-supported perfluoroalkyl sulfonylimide on catalytic fructose dehydration", Catal. Sci. Technol., 7, 4691-4699. https://doi.org/10.1039/C7CY01340J.   DOI
81 Kurtinaitiene, M., Mazeika, K., Ramanavicius, S., Pakstas, V. and Jagminas, A. (2016) "Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles", Adv. Nano Res., 4(1), 1-14. http://doi.org/10.12989/anr.2016.4.1.001.   DOI
82 Gabla, J.J., Mistry, S.R. and Maheria, K.C. (2017), "An efficient green protocol for the synthesis of tetra-substituted imidazoles catalyzed by zeolite BEA: effect of surface acidity and polarity of zeolite", Catal. Sci. Technol., 7, 5154-5167. https://doi.org/10.1039/C7CY01398A.   DOI
83 Hosseiniamoli, H., Setiawan, A., Adesinad, A.A., Kennedy, E.M. and Stockenhuber, M. (2020) "The stability of Pd/TS-1 and Pd/Silicalite-1 for catalytic oxidation of methane - understanding the role of titanium", Catal. Sci. Technol., 10, 1193-1204. https://doi.org/10.1039/C9CY01579E.   DOI
84 Yang, X., Sun, Z., Huang, X., Zhang, M., Bian, G., Qi, Y. and Yang, X. (2020) "Palladium functionalized yolk-shell nanorattles with tunable surface wettability for controllable catalytic selectivity", Colloid Surface A, 601, 124728. https://doi.org/10.1016/j.colsurfa.2020.124728.   DOI
85 Ahmad, M., Quan, X., Chen, S. and Yu, H. T. (2020) "Tuning lewis acidity of MIL-88B-Fe with mix-valence coordinatively unsaturated iron centers on ultrathin Ti3C2 nanosheets for efficient photo-Fenton reaction", Appl. Catal. B Environ., 264, 118534. https://doi.org/10.1016/j.apcatb.2019.118534.   DOI
86 Wang, L., Wang, G., Zhang, J., Bian, C., Meng, X. and Xiao, F.-S. (2017) "Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst", Nature Commun., 8, 15240. https://doi.org/10.1038/ncomms15240.   DOI