DOI QR코드

DOI QR Code

Hydrophobicity in nanocatalysis

  • Received : 2021.07.07
  • Accepted : 2021.10.19
  • Published : 2022.01.25

Abstract

Nanocatalysts are usually used in the synthesis of petrochemical products, fine chemicals, biofuel production, and automotive exhaust catalysis. Due to high activity and stability, recyclability, and cost-effectiveness, nanocatalysts are a key area in green chemistry. On the other hand, water as a common by-product or undesired element in a range of nanocatalyzed processes may be promoting the deactivation of catalytic systems. The advancement in the field of hydrophobicity in nanocatalysis could relatively solves these problems and improves the efficiency and recyclability of nanocatalysts. Some recent developments in the synthesis of novel nanocatalysts with tunable hydrophilic-hydrophobic character have been reviewed in this article and followed by highlighting their use in catalyzing several processes such as glycerolysis, Fenton, oxidation, reduction, ketalization, and hydrodesulfurization. Zeolites, carbon materials, modified silicas, surfactant-ligands, and polymers are the basic components in the controlling hydrophobicity of new nanocatalysts. Various characterization methods such as N2 adsorption-desorption, scanning and transmission electron microscopy, and contact angle measurement are critical in the understanding of hydrophobicity of materials. Also, in this review, it has been shown that how the hydrophobicity of nanocatalyst is affected by its structure, textural properties, and surface acidity, and discuss the important factors in designing catalysts with high efficiency and recyclability. It is useful for chemists and chemical engineers who are concerned with designing novel types of nanocatalysts with high activity and recyclability for environmentally friendly applications.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support for this work by the research council of Urmia University.

References

  1. Adel Niaei, H. and Rostamizadeh, M. (2020) "Adsorption and electro-Fenton processes over FeZSM-5 nano -zeolite for tetracycline removal from wastewater", Adv. Nano Res., 9(3), 173-181. https://doi.org/10.12989/anr.2020.9.3.173.
  2. Ahmad, M., Quan, X., Chen, S. and Yu, H. T. (2020) "Tuning lewis acidity of MIL-88B-Fe with mix-valence coordinatively unsaturated iron centers on ultrathin Ti3C2 nanosheets for efficient photo-Fenton reaction", Appl. Catal. B Environ., 264, 118534. https://doi.org/10.1016/j.apcatb.2019.118534.
  3. Auepattana-aumrung, C., Marquez, V., Wannakao, S., Jongsomjit, B., Panpranot, J. and Praserthdam, P. (2020), "Role of Al in Na-ZSM-5 zeolite structure on catalyst stability in butene cracking reaction", 10, 13643. https://doi.org/10.1038/s41598-020-70568.
  4. Aviles, M.D., Pamies, R., Sanes, J. and Bermudez, M.D. (2020), "Graphene-ionic liquid thin film nanolubricant", Nanomaterials, 10(3), 535. https://doi.org/10.3390/nano10030535.
  5. Ballotin, F.C., da Silva, M.J., Teixeira, A.P.C. and Lago, R.M. (2020) "Amphiphilic acid carbon catalysts produced by bio-oil sulfonation for solvent-free glycerol ketalization", Fuel, 274, 117799. https://doi.org/10.1016/j.fuel.2020.117799.
  6. Beeckman, J.W.L. (2020), Catalyst Engineering Technology: Fundamentals and Applications, Wiley, Weinheim, Germany.
  7. Benvenuto, M.A. and Plaumann, H. (2021), Industrial Catalysis, De Gruyter, Berlin, Germany.
  8. Blin, J.L., Riachy, P., Carteret, C. and Lebeau, B. (2019), "Thermal and hydrothermal stability of hierarchical porous silica materials", Eur. J. Inorg. Chem., 3194-3202. https://doi.org/10.1002/ejic.201900228.
  9. Bonrath, W., Medlock, J., Muller, M. and Schutz, J. (2021), Catalysis for Fine Chemicals, De Gruyter, Berlin, Germany.
  10. Bukhtiyarova, M.V. and Echevsky, G.V. (2019), "Modern research in the field of zeolites and zeolite-like materials: A review of the works of the boreskov institute of catalysis, siberian branch, russian academy of sciences", Pet. Chem., 59, 802-821. https://doi.org/10.1134/S0965544119080048.
  11. Cavuoto, D., Zaccheria, F. and Ravasio, N. (2020), "Some critical insights into the synthesis and applications of hydrophobic solid catalysts", Catalysts, 10, 1337. https://doi.org/10.3390/catal10111337.
  12. Calvino-Casilda, V., Lopez-Peinado, A.J., Martin-Aranda, R.M. and Mayoral, E.P. (2019), Nanocatalysis: Applications and Technologies, CRC Press.
  13. Chen, M., Wu, H., Li, Z., Wu, K., Jiao, Y. and Zhou, C. (2020) "Preparation of reduced graphene oxide porous beads for lipase immobilization and its application for oil adsorption and glycerolysis reaction in situ", Micropor. Mesopor. Mat., 294, 109920. https://doi.org/10.1016/j.micromeso.2019.109920.
  14. Cruz, P., Fajardo, M., Hierro, I. and Perez, Y. (2018), "Selective oxidation of thioanisole by titanium complexes immobilized on mesoporous silica nanoparticles: elucidating the environment of titanium(IV) species", Catal. Sci. Technol., 9, 620-633. https://doi.org/10.1039/c8cy01929k.
  15. Dandan, L., Hai-Qun, X., Long, J. and Hai-Long, J. (2019) "Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities", EnergyChem, 1(1), 100005. https://doi.org/10.1016/j.enchem.2019.100005.
  16. Dinh, V.T., Thu, P.A., An, N.T. Nhan, D.N.T. and Long, N.Q. (2018) "Toluene removal under humid conditions by synergistic adsorption-photocatalysis using nano TiO2 supported on ZSM-5 synthesized from rice-husk without structure-directing agent", React. Kinet. Mech. Cat., 125, 1039-1054. https://doi.org/10.1007/s11144-018-1452-7.
  17. Esmaeilnezhad, E., Karimian, M. and Choi, H.J. (2019) "Synthesis and thermal analysis of hydrophobic iron oxide nanoparticles for improving in-situ combustion efficiency of heavy oils", J. Ind. Eng. Chem., 71, 402-409. https://doi.org/10.1016/j.jiec.2018.11.052.
  18. Evgeny, K. (2020), Magnetic Nanoparticles, MDPI, Basel, Switzerland.
  19. Fawaz, E.G., Salam, D.A., Pinard, L. and Daou, T.J. (2019) "Study on the catalytic performance of different crystal morphologies of HZSM-5 zeolites for the production of biodiesel: a strategy to increase catalyst effectiveness", Catal. Sci. Technol., 9, 5456-5471. https://doi.org/10.1039/c9cy01427f.
  20. Gabla, J.J., Mistry, S.R. and Maheria, K.C. (2017), "An efficient green protocol for the synthesis of tetra-substituted imidazoles catalyzed by zeolite BEA: effect of surface acidity and polarity of zeolite", Catal. Sci. Technol., 7, 5154-5167. https://doi.org/10.1039/C7CY01398A.
  21. Guo, W., Niu, S., Shi, W., Zhang, B., Yu, W., Xie, Y., Ji, X., Wu, Y., Su, D. and Shao, L. (2018) "Pd-P nanoalloys supported on porous carbon frame as efficient catalyst for benzyl alcohol oxidation", Catal. Sci. Technol., 8, 2333-2339. https://doi.org/10.1039/C8CY00554K.
  22. Gayubo, A.G., Aguayo, A.T., Moran, A.L., Olazar, M. and Bilbao, J. (2002), "Role of water in the kinetic modeling of catalyst deactivation in the MTG process", AIChE J., 48(7), 1561-1571. https://doi.org/10.1002/aic.690480718.
  23. Gholami, R., Alyani, M . and Smith, K.J. (2015), "Deactivation of pd catalysts by water during low temperature methane oxidation relevant to natural gas vehicle converters", Catalysts, 5(2), 561-594. https://doi.org/10.3390/catal5020561.
  24. Gholamian, F. and Hajjami, M. (2019), "Functionalization of hexagonal mesoporous silicas (HMS) for the synthesis of efficient catalyst and investigation of its catalytic activity in the synthesis of 1-amidoalkyl-2-naphthols and 2-substituted benzimidazoles", Reac. Kinet. Mech. Cat. 128, 867-884. https://doi.org/10.1007/s11144-019-01663-0.
  25. Girgis, E., Adel, D., Tharwat, C., Attallah, O. and Rao, K.V. (2015) "Cobalt ferrite nanotubes and porous nanorods for dye removal", Adv. Nano Res., 3(2), 111-121. http://doi.org/10.12989/anr.2015.3.2.111.
  26. Hagen, J. (2015), Industrial Catalysis: A Practical Approach, (3rd Edition), Wiley-VCH, Weinheim, Germany.
  27. Hao, Y., Jiao, X., Zou, H., Yang, H. and Liu, J. (2017), "Growing a hydrophilic nanoporous shell on a hydrophobic catalyst interface for aqueous reactions with high reaction efficiency and in situ catalyst recycling", J. Mater. Chem. A, 5, 16162-16170. https://doi.org/10.1039/C6TA11124F.
  28. Harrison, A. and Tang, C. (2021) "Amphiphilic polymer nanoreactors for multiple step, one-pot reactions and spontaneous product separation", Polymers, 13(12), 1992. https://doi.org/10.3390/polym13121992.
  29. Hosseiniamoli, H., Setiawan, A., Adesinad, A.A., Kennedy, E.M. and Stockenhuber, M. (2020) "The stability of Pd/TS-1 and Pd/Silicalite-1 for catalytic oxidation of methane - understanding the role of titanium", Catal. Sci. Technol., 10, 1193-1204. https://doi.org/10.1039/C9CY01579E.
  30. Hu, H., Zhang, H.X., Chen, Y., Chen, Y.J., Zhuang, L. and Ou, H. S. (2019) "Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate: Effect of irradiation wavelength and real water matrixes", Chem. Eng. J., 368, 273-284. https://doi.org/10.1016/j.cej.2019.02.190.
  31. Ince, O.K., Aydogdu, B., Alp, H. and Ince, M. (2021) "Experimental design approach for ultra-fast nickel removal by novel bio bio-nanocomposite material", Adv. Nano Res., 10(1), 77-90. https://doi.org/10.12989/anr.2021.10.1.077.
  32. Jadhav, S.A., Miletto, I., Brunella, V., Berlier, G. and Scalarone, D. (2015), "Controlled post-synthesis grafting of thermoresponsive poly (Nisopropylacrylamide) on mesoporous silica nanoparticles", Polym. Adv. Technol., 26, 1070-1075. https://doi.org/10.1002/pat.3534.
  33. Jain, Y., Kumari, M., Agarwal, M. and Gupta, R. (2019) "Robust synthesis of sugar-coumarin based fluorescent 1,4-disubstituted-1,2, 3-triazoles using highly efficient recyclable citrate grafted β-cyclodextrin@magnetite nano phase transfer catalyst in aqueous media", Carbohydr. Res., 482, 107736. https://doi.org/10.1016/j.carres.2019.06.015.
  34. Javed, M., Zhang, G., Gao, W., Cao, Y., Dai, P., Ji, X., Lu, C., Yang, R., Xing, C. and Sun, J. (2019) "From hydrophilic to hydrophobic: A promising approach to tackle high CO2 selectivity of Fe-based Fischer-Tropsch microcapsule catalysts", Catal. Today, 330, 39-45. https://doi.org/10.1016/j.cattod.2018.08.010.
  35. Jeong, Y., Tonga, G.Y., Duncan, B., Yan, B., Das, R., Sahub, C. and Rotello, V.M. (2017) "Solubilization of hydrophobic catalysts using nanoparticle hosts", Small, 14(7), 1702198. https://doi.org/10.1002/smll.201702198.
  36. Jiang, J., Wang, S., Kong, Y., Yan, W., Chen, H., Liu, L., Chang, W. and Li, J. (2020) "Well-defined core-shell nanostructural block copolymer supported recyclable Bronsted acidic ionic liquid catalyst for the synthesis of biodiesel", Eur. Polym. J., 140, 109922. http://doi.org/10.1016/j.eurpolymj.2020.109922.
  37. Jin, Z., Wang, L., Hu, Q., Zhang, L., Xu, S., Dong, X., Gao, X., Ma, R., Meng, X., and F.S. Xiao (2018) "Hydrophobic zeolite containing titania particles as wettability-selective catalyst for formaldehyde removal", ACS Catal., 8(6), 5250-5254. https://doi.org/10.1021/acscatal.8b00732.
  38. Jin, Z., Wang, L., Zuidema, E., Mondal, K., Zhang, M., Zhang, J., Wang, C., Meng, X., Yang, H., Mesters, C. and Xiao, F.S. (2020) "Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol", Science, 367, 193-197. http://doi.org/10.1126/science.aaw1108.
  39. Kamel, S. and Khattab, T. (2021) "Recent advances in cellulose supported metal nanoparticles as green and sustainable catalysis for organic synthesis", Cellulose, 28, 4545-4574. https://doi.org/10.1007/s10570-021-03839-1.
  40. Kazemnejadi, M., Nasseri, M.A., Sheikh, S., Rezazadeha, Z. and Alavi Gol, S.A. (2021) "Fe3O4@Sap/Cu(II): An efficient magnetically recoverable green nanocatalyst for the preparation of acridine and quinazoline derivatives in aqueous media at room temperature", RSC Adv., 11, 15989-16003. https://doi.org/10.1039/d1ra01373d.
  41. Kurtinaitiene, M., Mazeika, K., Ramanavicius, S., Pakstas, V. and Jagminas, A. (2016) "Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles", Adv. Nano Res., 4(1), 1-14. http://doi.org/10.12989/anr.2016.4.1.001.
  42. Lai, B., Huang, Z., Jia, Z., Bai, R. and Gu, Y. (2016), "Silica-supported metal acetylacetonate catalysts with a robust and flexible linker constructed by using 2-butoxy-3,4-dihydropyrans as dual anchoring reagents and ligand donors", Catal. Sci. Technol., 6, 1810-1820. https://doi.org/10.1039/C5CY01012H.
  43. Lamonier, J.F. (2016), Catalytic Removal of Volatile Organic Compounds, MDPI, Basel, Switzerland.
  44. Lei, Y., Chen, Z., Lan, G., Wang, R. and Zhou, X.Y. (2020) "Pd nanoparticles stabilized by phosphine-functionalized porous ionic polymer for efficient catalytic hydrogenation of nitroarenes in water", New J. Chem., 44, 3681-3689. https://doi.org/10.1039/C9NJ05734J.
  45. Li, S., Zhou, H., Xiao, L., Fan, J. and Zheng, X. (2019), "Fabrication of super-hydrophobic titanosilicate sub-micro sphere with enhanced epoxidation catalytic activity", Catal. Lett., 149, 1396-1402. https://doi.org/10.1007/s10562-019-02720-y.
  46. Li, D., Lu, G. and Cai, C. (2020) "Modified cellulose with tunable surface hydrophilicity/hydrophobicity as a novel catalyst support for selective reduction of nitrobenzene", Catal. Commun., 137, 105949. https://doi.org/10.1016/j.catcom.2020.105949.
  47. Li, Y.X., Shen, J.X., Peng, S.S., Zhang, J.K., Wu, J., Liu, X.Q. and Sun, L.B. (2020) "Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization", Nat. Commun., 11, 3206. https://doi.org/10.1038/s41467-020-17042-6.
  48. Liu, F., Huang, K., Zheng, A., Xiao, F.S. and Dai, S. (2018), "Hydrophobic solid acids and their catalytic applications in green and sustainable chemistry", Catalysis, ACS Catal., 8(1), 372-391. https://doi.org/10.1021/acscatal.7b03369.
  49. Macina, D., Opiola, A., Rutkowska, M., Basag, S., Piwowarska, Z., Michalik, M. and Chmielarz, L. (2017), "Mesoporous silica materials modified with aggregated transition metal species (Cr, Fe and Cr-Fe) in the role of catalysts for selective catalytic oxidation of ammonia to dinitrogen", Mater. Chem. Phys., 187, 60-71. https://doi.org/10.1016/j.matchemphys.2016.11.047.
  50. Manoel, E.A., Dos Santos, J.C., Freire, D.M., Rueda, N. and Fernandez-Lafuente, R. (2015) "Immobilization of lipases on hydrophobic supports involves the open form of the Enzyme", Enzym. Microb. Technol., 71, 53-57. https://doi.org/10.1016/j.enzmictec.2015.02.001.
  51. McNamara, C.A., Dixon, M.J. and Bradley, M. (2002) "Recoverable catalysts and reagents using recyclable polystyrene-based supports", Chem. Rev., 102(10), 3275-3300. https://doi.org/10.1021/cr0103571.
  52. Minh, N.T., Thanh, L.D., Trung, B.C., An, N.T. and Long, N.Q. (2018) "Dual functional adsorbent/catalyst of nano-gold/metal oxides supported on carbon grain for low-temperature removal of toluene in the presence of water vapor", Clean. Technol. Environ. Policy, 20, 1861-1873. https://doi.org/10.1007/s10098-018-1583-6.
  53. Mousavi, Z., Pourgholam, B., Zamani, A. and Abtahi Froushani, S.M. (2020) "Green, lipophilic and recyclable catalysts for the aerobic oxidation of alcohols", Inorg. Nano-Metal Chem., 50(7), 508-514. https://doi.org/10.1080/24701556.2020.1720727.
  54. Oozeerally, R., Burnett, D.L., Chamberlain, T.W., Kashtiban, R.J., Huband, S., Walton, R.I. and Degirmenci, V. (2021) "Systematic modification of uio-66 metal-organic frameworks for glucose conversion into 5-hydroxymethyl furfural in water", ChemCatChem, 13, 2517-2529. https://doi.org/10.1002/cctc.202001989.
  55. O zturk, B.O ., Durmus, B. and Sehitoglu, S.K. (2018) "Olefin metathesis in air using latent ruthenium catalysts:Iimidazole substituted amphiphilic hydrogenated romp polymers providing nano-sized reaction spaces in water", Catal. Sci. Technol., 8, 5807-5815. https://doi.org/10.1039/C8CY01818A.
  56. Prasnikar, A., Pavlisic, A., Ruiz-Zepeda, F., Kovac, J. and Likozar, B. (2019), "Mechanisms of copper-based catalyst deactivation during CO2 reduction to methanol", Ind. Eng. Chem. Res., 58(29), 13021-13029. https://doi.org/10.1021/acs.iecr.9b01898.
  57. Rashed, M.N. and Palanisamy, P.N. (2018), Zeolites and Their Applications, IntechOpen Ltd, London, U.K.
  58. Rodrigues, R.C., Virgen-Ortiz, J.J., Dos Santos, J.C.S., Berenguer-Murcia, A., Alcantara, A., Barbosa, O., Ortiz, C. and Fernandez-Lafuente, R. (2019) "Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions", Biotechnol. Adv., 37, 746-770. https://doi.org/10.1016/j.biotechadv.2019.04.003.
  59. Rodrigues, T.S., da Silva, A.G.M. and Camargo, P.H.C. (2019), "Nanocatalysis by noble metal nanoparticles: Controlled synthesis for the optimization and understanding of activities", J. Mater. Chem. A, 7, 5857-5874. https://doi.org/10.1039/C9TA00074G.
  60. Saenz-Galindo, A., Facio, A.O.C. and Rodriguez-Herrera, R. (2020), Green Chemistry and Applications, CRC Press.
  61. Singh, B., Na, J., Konarova, M., Wakihara, T., Yamauchi, Y., Salomon, C. and Gawande, M.B. (2020), "Functional mesoporous silica nanomaterials for catalysis and environmental applications", Bull. Chem. Soc. Jpn., 93(12), 1459-1496. https://doi.org/10.1246/bcsj.20200136.
  62. Szelwicka, A., Kolanowska, A., Latos, Jurczyk, Boncel, P.S.S. and Chrobok, A. (2020) "Carbon nanotube/PTFE as a hybrid platform for lipase B from Candida antarctica in transformation of α-angelica lactone to alkyl levulinates", Catal. Sci. Technol., 10, 3255-3264. https://doi.org/10.1039/D0CY00545B.
  63. Tan, M., Tian, S., Zhang, T., Wang, K., Xiao, L., Liang, J., Ma, Q., Yang, G., Tsubaki, N. and Tan, Y. "Probing hydrophobization of a cu/zno catalyst for suppression of water-gas shift reaction in syngas conversion", ACS Catal., 11, 4633-4643. https://doi.org/10.1021/acscatal.0c05585.
  64. Tanev, P.T. and Pinnavaia, T.J. (1995), "A neutral templating route to mesoporous molecular sieves", Science, 267, 865-867. https://doi.org/10.1126/science.267.5199.865.
  65. Trung, B.C., Tu, L.N.Q., Thanh, L.D., Dung, N.V. An, N.T. and Long, N.Q. (2020) "Combined adsorption and catalytic oxidation for low-temperature toluene removal using nano-sized noble metal supported on ceria-granular carbon", J. Environ. Chem. Eng., 8(2), 103546. https://doi.org/10.1016/j.jece.2019.103546.
  66. Trung, B.C., Tu, L.N.Q., Tri, N.T.M., An, N.T. and Long, N.Q. (2021) "Granular-carbon supported nano noble-metal (Au, Pd, Au-Pd): New dual-functional adsorbent/catalysts for effective removal of toluene at low-temperature and humid condition", Environ. Technol., 42(11), 1772-1786. https://doi.org/10.1080/09593330.2019.1680742.
  67. Wang, H., Fang, L., Yang, Y., Zhang, L. and Wang, Y. (2016) "H5PMo10V2O40 immobilized on functionalized chloromethylated polystyrene by electrostatic interactions: a highly efficient and recyclable heterogeneous catalyst for hydroxylation of benzene", Catal. Sci. Technol., 6, 8005-8015. https://doi.org/10.1039/C6CY01270A.
  68. Wang, L., Wang, G., Zhang, J., Bian, C., Meng, X. and Xiao, F.-S. (2017) "Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst", Nature Commun., 8, 15240. https://doi.org/10.1038/ncomms15240.
  69. Wang, B., Xu, H., Zhu, Z., Guan, Y. and Wu, P. (2019a) "Ultrafast synthesis of nanosized ti-beta via structural reconstruction method as efficient oxidation catalyst", Catal. Sci. Technol., 9, 1857-1866. https://doi.org/10.1039/C9CY00071B.
  70. Wang, J.C. Li, Y., Li, H., Cui, Z.H., Hou, Y., Shi, W., Jiang, K., Qu, L. and Zhang, Y.P. (2019b) "A novel synthesis of oleophylic Fe2O3/polystyrene fibers by γ-Ray irradiation for the enhanced photocatalysis of 4-chlorophenol and 4-nitrophenol degradation", J. Hazard. Mater., 379, 120806. https://doi.org/10.1016/j.jhazmat.2019.120806.
  71. Wang, W., Zhou, W., Li, W., Xiong, X., Wang, Y., Cheng, K., Kang, J., Zhang, Q. and Wang, Y. (2020) "In-situ confinement of ultrasmall palladium nanoparticles in silicalite-1 for methane combustion with excellent activity and hydrothermal stability", Appl. Catal. B, 276, 119142. https://doi.org/10.1016/j.apcatb.2020.119142.
  72. Wolf, M., Fischer, N. and Claeys, M. (2020), "Water-induced deactivation of cobalt-based Fischer-Tropsch catalysts", Nat. Catal., 3, 962-965. https://doi.org/10.1038/s41929-020-00534-5.
  73. Wu, Q., Peng, J., Kong, W. and Zou, Y. (2017) "Super-hydrophobic, stable, and swelling nanoporous solid strong acid", Kinet. Catal., 58(6) 816-824. https://doi.org/10.1134/S0023158417060131.
  74. Wu, Y., Wang, H., Guo, S., Zeng, Y. and Ding, M. (2021) "MOFs-induced high-amphiphilicity in hierarchical 3D reduced graphene oxide-based hydrogel", Appl. Surf. Sci., 540, 148303. https://doi.org/10.1016/j.apsusc.2020.148303.
  75. Xu, Y., Li, X., Gao, J., Wang, J., Ma, G., Wen, X., Yang, Y., Li, Y. and Ding, M. "A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products", Science, 371, 610-613. https://doi.org/10.1126/science.abb3649.
  76. Yang, X., Sun, Z., Huang, X., Zhang, M., Bian, G., Qi, Y. and Yang, X. (2020) "Palladium functionalized yolk-shell nanorattles with tunable surface wettability for controllable catalytic selectivity", Colloid Surface A, 601, 124728. https://doi.org/10.1016/j.colsurfa.2020.124728.
  77. Yu, X., Zhang, J., Wang, X., Ma, Q., Gao, X., Xia, H., Lai, X., Fan, S. and Zhao, T.S. (2018) "Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity", Appl. Catal. B, 232, 420-428. https://doi.org/10.1016/j.apcatb.2018.03.048.
  78. Yuce, M.Y. and Demirel, A.L. (2008) "The effect of nanoparticles on the surface hydrophobicity of polystyrene", Eur. Phys. J. B, 64, 493-497. https://doi.org/10.1140/epjb/e2008-00042-0.
  79. Yuce, M.Y., Demirel, A.L. and Menzel, F. (2005) "Tuning the surface hydrophobicity of polymer/ nanoparticle composite films in the wenzel regime by composition", Langmuir, 21, 5073-5078. https://doi.org/10.1021/la050033y.
  80. Zamani, A., Poursattar Marjani, A., Nikoo, A., Heidarpoura, M. and Dehghan, A. (2018a) "Synthesis and characterization of copper nanoparticles on walnut shell for catalytic reduction and C-C coupling reaction", Inorg. Nano-Metal Chem., 48(3), 176-181. https://doi.org/10.1080/24701556.2018.1503676.
  81. Zamani, A., Poursattar Marjani, A. and Alimoradlu, K. (2018b) "Walnut shell-templated ceria nanoparticles: green synthesis, characterization and catalytic application", Int. J. Nanosci., 17(6), 1850008. https://doi.org/10.1142/S0219581X18500084.
  82. Zamani, A., Poursattar Marjani, A. and Mousavi, Z. (2019a) "Agricultural waste biomass-assisted nanostructures: Synthesis and application", Green Proc. Synth., 8, 421-429. https://doi.org/10.1515/gps-2019-0010.
  83. Zamani, A., Poursattar Marjani, A. and Abedi Mehmandar, M. (2019b) "Synthesis of high surface area magnesia by using walnut shell as a template", Green Proc. Synth., 8, 199-206. https://doi.org/10.1515/gps-2018-0066.
  84. Zamani A., Poursattar Marjani A., Abdollahpour N., (2019c) "Synthesis of high surface area boehmite and alumina by using walnut shell as template", Int. J. Nano Biomater., 8(1), 1-14. https://doi.org/10.1504/IJNBM.2019.097588.
  85. Zhang, H.J., Cheng, Y., Yuan, H. Wang, Y. and Ma, Z.H. (2017), "An enhanced nonpolarity effect of silica-supported perfluoroalkyl sulfonylimide on catalytic fructose dehydration", Catal. Sci. Technol., 7, 4691-4699. https://doi.org/10.1039/C7CY01340J.
  86. Zhang, Y., Liu, F., Yang, Z., Qian, J. and Pan, B. (2020) "Weakly hydrophobic nanoconfinement by graphene aerogels greatly enhances the reactivity and ambient stability of reactivity of MIL-101-Fe in Fenton-like reaction", Nano Res., 14(7), 2383-2389. https://doi.org/10.1007/s12274-020-3239-1.