• Title/Summary/Keyword: Oxidation State

Search Result 586, Processing Time 0.028 seconds

Structural and electrical characterizations of $HfO_{2}/HfSi_{x}O_{y}$ as alternative gate dielectrics in MOS devices (MOS 소자의 대체 게이트 산화막으로써 $HfO_{2}/HfSi_{x}O_{y}$ 의 구조 및 전기적 특성 분석)

  • 강혁수;노용한
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.45-49
    • /
    • 2001
  • We have investigated physical and electrical properties of the Hf $O_2$/HfS $i_{x}$/ $O_{y}$ thin film for alternative gate dielectrics in the metal-oxide-semiconductor device. The oxidation of Hf deposited directly on the Si substrate results in the H $f_{x}$/ $O_{y}$ interfacial layer and the high-k Hf $O_2$film simultaneously. Interestingly, the post-oxidation N2 annealing of the H102/H1Si70y thin films reduces(increases) the thickness of an amorphous HfS $i_{x}$/ $O_{y}$ layer(Hf $O_2$ layer). This phenomenon causes the increase of the effective dielectric constant, while maintaining the excellent interfacial properties. The hysteresis window in C-V curves and the midgap interface state density( $D_{itm}$) of Hf $O_2$/HfS $i_{x}$/ $O_{y}$ thin films less than 10 mV and ~3$\times$10$^{11}$ c $m^{-2}$ -eV without post-metallization annealing, respectively. The leakage current was also low (1$\times$10-s A/c $m^2$ at $V_{g}$ = +2 V). It is believed that these excellent results were obtained due to existence of the amorphous HfS $i_{x}$/ $O_{y}$ buffer layer. We also investigated the charge trapping characteristics using Fowler-Nordheim electron injection: We found that the degradation of Hf $O_2$/HfS $i_{x}$/ $O_{y}$ gate oxides is more severe when electrons were injected from the gate electrode.e electrode.e.e electrode.e.

  • PDF

The Characteristics of Shallow Groundwater in Petroleum Contaminated Site and the Assessment of Efficiency of Biopile by Off-gas Analysis (유류오염지역의 지하수 수질특성과 토양가스 분석을 통한 바이오파일의 효율평가)

  • Cho, Chang-Hwan;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.36-44
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of shallow groundwater from the oil-contaminated site for a long period and to evaluate the applicability of biopile technology to treat the soil excavated from it. The eight monitoring wells were installed in the contaminated site and pH, Electrical Conductivity (EC), Dissolved Oxygen (DO), Oxidation Reduction Potential (ORP), Temperature and the concentrations of major ions and pollutants were measured. The VOCs in soil gas were monitored during biopile operation and TPH concentration was analyzed at the termination of the experiment. The pH was 6.62 considered subacid and EC was 886.19 ${\mu}S/cm$. DO was measured to be 2.06 mg/L showing the similar characteristic of deep groundwater. ORP was 119.02 mV indicating oxidation state. The temperature of groundwater was measured to be $16.97^{\circ}C$. The piper diagram showed that groundwater was classified as Ca-$HCO_3$ type considered deep groundwater. The ground water concentration for TPH, Benzene, Toluene, Xylene of the first round was slightly higher than that of the second round. The concentration of carbon dioxide of soil gas was increased to 1.3% and the concentration of VOCs was completely eliminated after the 40 days. The TPH concentration showed 98% remediation efficiency after the 90 days biopile operation.

Investigation on effect of surface properties on droplet impact cooling of cladding surfaces

  • Wang, Zefeng;Qu, Wenhai;Xiong, Jinbiao;Zhong, Mingjun;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.508-519
    • /
    • 2020
  • During transients or accidents, the reactor core is uncovered, and droplets entrained above the quench front collides with the uncovered fuel rod surface. Droplet impact cooling can reduce the peak cladding temperature. Besides zirconium-based cladding, versatile accidental tolerant fuel (ATF) claddings, including FeCrAl, have been proposed to increase the accident coping time. In order to investigate the effect of surface properties on droplet impact cooling of cladding surfaces, the droplet impact phenomena are photographed on the FeCrAl and zircaloy-4 (Zr-4) surfaces under different conditions. On the oxidized FeCrAl surface, the Leidenfrost phenomenon is not observed even when the surface temperature is as high as 550 ℃ with We > 30. Comparison of the impact behaviors observed on different materials shows that nucleate and transition boiling is more intensive on surfaces with larger thermal conductivity. The Leidenfrost point temperature (LPT) decreases with the solid thermal effusivity (${\sqrt{k{\rho}C_p}}$). However, the CHF temperature is relatively insensitive to the surface oxidation and Weber number. Droplet spreading diameter is analyzed quantitatively in the film boiling stage. Based on the energy balance a correlation is proposed for droplet maximum spreading factor. A mechanistic model is also developed for the LPT based on homogeneous nucleation theory.

Synthesis and Electrochemical Characterization of Silica-Manganese Oxide with a Core-shell Structure and Various Oxidation States

  • Ryu, Seong-Hyeon;Hwang, Seung-Gi;Yun, Su-Ryeon;Cho, Kwon-Koo;Kim, Ki-Won;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2683-2688
    • /
    • 2011
  • Silica-manganese oxides with a core-shell structure were synthesized via precipitation of manganese oxides on the $SiO_2$ core while varying the concentration of a precipitation agent. Elemental analysis, crystalline property investigation, and morphology observations using low- and high-resolution electron microscopes were applied to the synthesized silica-manganese oxides with the core-shell structure. As the concentration of the precipitating agent increased, the manganese oxide shells around the $SiO_2$ core sequentially appeared as $Mn_3O_4$ particles, $Mn_2O_3+Mn_3O_4$ thin layers, and ${\alpha}-MnO_2$ urchin-like phases. The prepared samples were assembled as electrodes in a supercapacitor with 0.1 M $Na_2SO_4$ electrolyte, and their electrochemical properties were examined using cyclic voltammetry and charge-discharge cycling. The maximum specific capacitance obtained was 197 F $g^{-1}$ for the $SiO_2-MnO_2$ electrode due to the higher electronic conductivity of the $MnO_2$ shell compared to those of the $Mn_2O_3$ and $Mn_3O_4$ phases.

Tuning Photophysical and Electrochemical Properties of Heteroleptic Cationic Iridium(III) Complexes Containing Substituted 2-Phenylquinoxaline and Biimidazole

  • Sengottuvelan, Nallathambi;Seo, Hoe-Joo;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2309-2314
    • /
    • 2010
  • Design and syntheses of four red phosphorescent heteroleptic cationic iridium(III) complexes containing two substituted phenylquinoxaline (pqx) or benzo[b]thiophen-2-yl-pyridin (btp) main ligands and one 2,2'-biimidazole (H2biim) ancillary ligand are reported: [$(pqx)_2$Ir(biim)]Cl (1), [$(dmpqx)_2$Ir(biim)]Cl (2), [$(dfpqx)_2$Ir(biim)]Cl (3), [$(btp)_2$Ir(biim)]Cl (4). Complex 1 showed a distorted octahedral geometry around the iridium(III) metal ion with cis metallated carbons and trans nitrogen atoms. The absorption, emission and electrochemical properties were systematically evaluated. The complexes exhibited red phosphorescence in the spectral range of 580 to 620 nm with high quantum efficiencies of 0.58 - 0.78 in both solution and solid-state at room temperature depending on the cyclometalated main ligands. The cyclic voltammetry of the complexes (1-3) showed a metal-centered irreversible oxidation in the range of 1.40 to 1.90 V as well as two quasi reversible reduction waves from -1.15 to -1.45 V attributed to the sequential addition of two electrons to the more electron accepting heterocyclic portion of two distinctive cyclometalated main ligands, whereas complex 4 showed a reversible oxidation potential at 1.24 V and irreversible reduction waves at -1.80 V.

The Selective Catalytic Oxidation of Ammonia: Effect of Physicochemical Properties on Pt/TiO2 (Pt/TiO2 촉매의 물리화학적 특성이 NH3-SCO 반응활성에 미치는 영향)

  • Shin, Jung Hun;Kim, Dong Ho;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.279-285
    • /
    • 2017
  • In this study, the study of the selective catalytic oxidation (SCO) for controlling the $NH_3$ at $200{\sim}350^{\circ}C$ range was investigated. Physicochemical properties of the catalysts were determined using XRD and XPS analysis. In the case of catalytic activity according to thermal treatment condition, the reduction catalyst showed better activity than that of using the calcination catalyst. It was confirmed that the valence state of reduction catalyst was mainly $Pt^{2+}$ and $Pt^0$ as analyzed by XPS. Also, when comparing the reaction activities of $Pt/TiO_2$ catalysts according to the reduction temperature, the $NH_3$ conversion of the catalyst reduced at $700^{\circ}C$ showed the most excellent activity. However, the best activity of $NH_3$ conversion to $N_2$ was obtained for the catalyst reduced at $600^{\circ}C$.

Bitter Melon (Momordica charantia) Extract Enhances Exercise Capacity in Mouse Model (여주(Momordica charantia) 추출물이 생쥐의 지구력 운동수행능력 향상 효과에 미치는 영향)

  • Kim, Inbo;Park, Choon-Ho;Jung, Hoe-Yune;Jeong, Juseong;Hong, Hwan-Ung;Kim, Jong Bae
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.4
    • /
    • pp.506-512
    • /
    • 2016
  • Bitter melon (Momordica charantia) is used in traditional herbal medicine in many Asian countries for the treatment of several diseases such as diabetes, eczema, night blindness, psoriasis, and rheumatism. Especially, most reports concerning the biological activities of bitter melon have focused on its effects on diabetes and hyperglycemia. Also, bitter melon is regarded as a longevity food, suggesting that it has several beneficial effects on anti-aging and the maintenance of a healthy state. Thus, we investigated whether bitter melon could increase the capacity of exercise in this study. Interestingly, bitter melon fruit extract activated AMP-activated protein kinase (AMPK), which is important for regulating glucose homeostasis, mitochondrial content and exercise capacity. In addition, bitter melon extract increased the expression of enzymes involved in fatty acid oxidation such as mitochondrial uncoupling protein 3 (UCP3), carnitine palmitoyl transferase 1b (CPT1b), and pyruvate dehydrogenase lipoamide kinase isozyme 4 (PDK4). Moreover, exercise tolerance was much more enhanced in bitter melon treated animals compared to the non-treated control group. These results suggest that bitter melon is a promising candidate for the development of functional foods beneficial for physical strength and the enhancement of exercise capacity.

Kinetic Properties of the Dye-Coupled Cytoplasmic Polyol Dehydrogenase from Gluconobacter melanogenus (Gluconobacter melanogenus 로부터의 폴리올 탈수소효소에 대한 반응속도론적 특성에 관한 연구)

  • Kang-Wha Kim;Hyun-Jae Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.315-321
    • /
    • 1980
  • A steady-state kinetic study on a dye-coupled cytoplasmic polyol dehydrogenase from G. melanogenus was carried by the initial velocity measurements in the direction of the polyol oxidation and the product inhibition by D-fructose. For the initial rate experiments, D-mannitol and D-sorbitol were employed as the specific polyol substrates and 2,6-dichlorophenolin-dophenol (DPIP) as the specific cofactor substrate for the enzyme. When the polyol and DPIP were examined by varying one of substrates and by fixing the second, the corresponding reciprocal plots showed the typical parallel pattern. This suggests that the enzyme from G. melanogenus proceeds by a Ping Pong Bi-Bi mechanism in which the polyol may account as the first reactant-in, and the ketose formed as the first product-out, respectively. The product inhibition patterns obtained by D-fructose (one no-inhibition, one non-competitive, and two competitive) may also provide an additional conformatory evidence for the above mechanism. Based on the kinetic parameters obtained, it was also suggested that the rate-limiting step in the direction of polyol oxidation is associated with the release of the ketose from the Enzyme${\cdot}$Polyol complex.

  • PDF

Piggery Waste Treatment using Partial Nitritation and Anaerobic Ammonium Oxidation (부분질산화와 혐기성 암모늄산화를 이용한 돈사폐수처리)

  • Hwang, In-Su;Min, Kyung-Sok;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.599-604
    • /
    • 2006
  • Nitrogen removal with the combined SHARON (Single reactor system for high ammonium removal over nitrite)ANAMMOX (Anaerobic ammonium oxidation) process using the effluent of ADEPT (Anaerobic digestion elutriated phased treatment) slurry reactor with very low C/N ratio for piggery waste treatment was investigated. For the preceding SHARON reactor, ammonium nitrogen loading and removal rate were $0.97kg\;NH_4-N/m^3_{reactor}/day$ and $0.68kg\;NH_4-N/m^3_{reactor}/day$ respectively. In steady state, bicarbonate alkalinity consumption for ammonium nitrogen converted to $NO_2-N$ or $NO_3-N$ was 8.4 gram per gram ammonium nitrogen. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. The loading and removal rate of the soluble nitrogen defined as the sum total of $NH_4-N$, $NO_2-N$ and $NO_3-N$ in ANAMMOX reactor were $1.36kg\;soluble\;N/m^3_{reactor}/day$ and $0.7kg\;soluble\;N/m^3_{reactor}/day$, respectively. The average $NO_2-N/NH_4-N$ removal ratio by ANAMMOX was 2.41. Fluorescence in situ hybridization (FISH) analysis verified that Candidatus Kuenenia stuttgartiensis were dominate, which means that they played an important role of nitrogen removal in ANAMMOX reactor.

Effect of Dipeptides on In vitro Maturation, Fertilization and Subsequent Embryonic Development of Porcine Oocytes

  • Tareq, K.M.A.;Akter, Quzi Sharmin;Tsujii, Hirotada;Khandoker, M.A.M. Yahia;Choi, Inho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.501-508
    • /
    • 2013
  • The effects of amino acids and dipeptides on in vitro production of porcine embryos and accumulation of ammonia in culture medium during developmental stages were examined in this study. The maturation, fertilization and development of embryonic cultures were performed in modified Tissue culture medium (mTCM)-199 supplemented with 10% (v/v) porcine follicular fluid, modified Tyrode's albumin lactate pyruvate (mTALP) medium, and modified North Carolina State University (mNCSU)-23 medium, respectively. In addition, amino acids and dipeptides of different concentrations and combinations were used to treat the embryos. The addition of L-alanyl-L-glutamine (AlnGln)+L-glycyl-L-glutamine (GlyGln) significantly (p<0.05) improved oocyte maturation, fertilization and the incorporation and oxidation of 14C(U)-glucose when compared to the control group and other treatment groups. Additionally, 2-4 cell, 8-16 cell, morula and blastocyst development increased significantly (p<0.05) following treatment with AlnGln+GlyGln when compared to the control group and other treatment groups, while this treatment reduced the accumulation of ammonia. Taken together, these findings suggest that treatment with AlnGln+GlyGln may play an important role in increasing the rate of porcine oocyte maturation, fertilization and embryonic development by reducing the level of accumulated ammonia measured in the culture media.