Browse > Article
http://dx.doi.org/10.1016/j.net.2019.08.022

Investigation on effect of surface properties on droplet impact cooling of cladding surfaces  

Wang, Zefeng (School of Nuclear Science and Engineering, Shanghai Jiao Tong University)
Qu, Wenhai (School of Nuclear Science and Engineering, Shanghai Jiao Tong University)
Xiong, Jinbiao (School of Nuclear Science and Engineering, Shanghai Jiao Tong University)
Zhong, Mingjun (State Key Laboratory of Reactor System Design Technology, Nuclear Power Institute of China)
Yang, Yanhua (School of Nuclear Science and Engineering, Shanghai Jiao Tong University)
Publication Information
Nuclear Engineering and Technology / v.52, no.3, 2020 , pp. 508-519 More about this Journal
Abstract
During transients or accidents, the reactor core is uncovered, and droplets entrained above the quench front collides with the uncovered fuel rod surface. Droplet impact cooling can reduce the peak cladding temperature. Besides zirconium-based cladding, versatile accidental tolerant fuel (ATF) claddings, including FeCrAl, have been proposed to increase the accident coping time. In order to investigate the effect of surface properties on droplet impact cooling of cladding surfaces, the droplet impact phenomena are photographed on the FeCrAl and zircaloy-4 (Zr-4) surfaces under different conditions. On the oxidized FeCrAl surface, the Leidenfrost phenomenon is not observed even when the surface temperature is as high as 550 ℃ with We > 30. Comparison of the impact behaviors observed on different materials shows that nucleate and transition boiling is more intensive on surfaces with larger thermal conductivity. The Leidenfrost point temperature (LPT) decreases with the solid thermal effusivity (${\sqrt{k{\rho}C_p}}$). However, the CHF temperature is relatively insensitive to the surface oxidation and Weber number. Droplet spreading diameter is analyzed quantitatively in the film boiling stage. Based on the energy balance a correlation is proposed for droplet maximum spreading factor. A mechanistic model is also developed for the LPT based on homogeneous nucleation theory.
Keywords
Droplet impact; Surface oxidation; Leidenfrost point temperature; Droplet spreading;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.D. Bernardin, C.J. Stebbins, I. Mudawar, Effects of surface roughness on water droplet impact history and heat transfer regimes, Int. J. Heat Mass Transf. 40 (1) (1996) 73-88.   DOI
2 S.Y. Misyura, The effect of Weber number, droplet sizes and wall roughness on crisis of droplet boiling, Exp. Therm. Fluid Sci. 84 (2017) 190-198.   DOI
3 E.-S.R. Negeed, S. Hidaka, M. Kohno, Y. Takata, Effect of the surface roughness and oxidation layer on the dynamic behavior of micrometric single water droplets impacting onto heated surfaces, Int. J. Therm. Sci. 70 (2013) 65-82.   DOI
4 Z. Wang, J. Xiong, W. Yao, W. Qu, Y. Yang, Experimental investigation on the Leidenfrost phenomenon of droplet impact on heated silicon carbide surfaces, Int. J. Heat Mass Transf. 128 (2019) 1206-1217.   DOI
5 H. Kim, B. Truong, J. Buongiorno, L.-W. Hu, On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena, Appl. Phys. Lett. 98 (8) (2011), 083121.   DOI
6 M.A.J. van Limbeek, M. Shirota, P. Sleutel, C. Sun, A. Prosperetti, D. Lohse, Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature, Int. J. Heat Mass Transf. 97 (2016) 101-109.   DOI
7 K. Baumeister, F. Simon, Leidenfrost temperaturedits correlation for liquid metals, cryogens, hydrocarbons, and water, J. Heat Transf. 95 (2) (1973) 166-173.   DOI
8 P.J. Berenson, Film-boiling heat transfer from a horizontal surface, Trans.ASME J. Heat Transf. 83 (3) (1960) 351-356.   DOI
9 V. Bertola, K. Sefiane, Controlling secondary atomization during drop impacton hot surfaces by polymer additives, Phys. Fluids 17 (10) (2005), 108104.   DOI
10 P.J. Berenson, Film-boiling heat transfer from a horizontal surface, J. HeatTransf. 83 (3) (1961) 351-356.   DOI
11 H.J. Spiegler P, M. Silberberg, et al., Onset of stable film boiling and the foamlimit, Int. J. Heat Mass Transf. 6 (11) (1963) 987-989.   DOI
12 G. Liang, I. Mudawar, Review of drop impact on heated walls, Int. J. Heat Mass Transf. 106 (2017) 103-126.   DOI
13 S. Nishio, M. Hirata, Direct contact phenomenon between a liquid droplet and high temperature solid surface, in: Sixth International Heat Transfer Conference, 1978, pp. 245-250.
14 M. Rein, Drop-surface Interactions, Springer, 2014.
15 A.L. Yarin, et al., Drop impact dynamics: splashing, spreading, receding, bouncing, Annu. Rev. Fluid Mech. 38 (2006) 159-192.   DOI
16 T. Tran, H.J. Staat, A. Prosperetti, C. Sun, D. Lohse, Drop impact on superheated surfaces, Phys. Rev. Lett. 108 (3) (2012), 036101.   DOI
17 T. Tran, H.J. Staat, A. Susarrey-Arce, T.C. Foertsch, A. van Houselt, H.J. Gardeniers, A. Prosperetti, D. Lohse, C. Sun, Droplet impact on superheated micro-structured surfaces, Soft Matter 9 (12) (2013) 3272-3282.   DOI
18 R.K. Shah, A.L. London, Chapter VI - parallel plates, in: R.K. Shah, A.L. London (Eds.), Laminar Flow Forced Convection in Ducts, Academic Press, 1978, pp. 153-195.
19 T. Tran, H.J.J. Staat, A. Prosperetti, C. Sun, D. Lohse, Drop impact on superheated surfaces, Phys. Rev. Lett. 108 (3) (2012), 036101.   DOI
20 C. Mundo, M. Sommerfeld, C. Tropea, Droplet-wall collisions: experimental studies of the deformation and breakup process, Int. J. Multiph. Flow 21 (2) (1995) 151-173.   DOI
21 J. Buongiorno, Can corrosion and CRUD actually improve safety margins in LWRs? Ann. Nucl. Energy 63 (2014) 9-21.   DOI
22 G.E. Cossali, A. Coghe, M. Marengo, The impact of a single drop on a wetted solid surface, Exp. Fluid 22 (6) (1997) 463-472.   DOI
23 M. Blander, J.L. Katz, Bubble nucleation in liquids, AIChE J. 21 (5) (1975)833-848.   DOI
24 K.S. Hamdan, D.-E. Kim, S.-K. Moon, Droplets behavior impacting on a hot surface above the Leidenfrost temperature, Ann. Nucl. Energy 80 (2015) 338-347.   DOI
25 R. Wendelstorf, K.-H. Spitzer, J. Wendelstorf, Effect of oxide layers on spray water cooling heat transfer at high surface temperatures, Int. J. Heat Mass Transf. 51 (19-20) (2008) 4892-4901.   DOI
26 J. Sinha, Effects OF surface roughness, oxidation level, and liquid subcooling ON the minimum film boiling temperature, Exp. Heat Transf. 16 (1) (2003) 45-60.   DOI
27 S.-C. Yao, K.Y. Cai, The dynamics and Leidenfrost temperature of drops impacting on a hot surface at small angles, Exp. Therm. Fluid Sci. 1 (4) (1988) 363-371.   DOI
28 S. Chandra, C. Avedisian, On the collision of a droplet with a solid surface, Proc. R. Soc. Lond. Ser A Math. Phys. Sci. 432 (1884) (1991) 13-41.
29 T. Mao, D.C. Kuhn, H. Tran, Spread and rebound of liquid droplets upon impact on flat surfaces, AIChE J. 43 (9) (1997) 2169-2179.   DOI
30 M. Pasandideh-Fard, Y. Qiao, S. Chandra, J. Mostaghimi, Capillary effects during droplet impact on a solid surface, Phys. Fluids 8 (3) (1996) 650-659.   DOI