DOI QR코드

DOI QR Code

Effect of Dipeptides on In vitro Maturation, Fertilization and Subsequent Embryonic Development of Porcine Oocytes

  • Tareq, K.M.A. (School of Biotechnology, Yeungnam University) ;
  • Akter, Quzi Sharmin (Department of Animal Breeding and Genetics, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University) ;
  • Tsujii, Hirotada (Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University) ;
  • Khandoker, M.A.M. Yahia (Department of Animal Breeding and Genetics, Bangladesh Agricultural University) ;
  • Choi, Inho (School of Biotechnology, Yeungnam University)
  • Received : 2012.10.08
  • Accepted : 2012.12.10
  • Published : 2013.04.01

Abstract

The effects of amino acids and dipeptides on in vitro production of porcine embryos and accumulation of ammonia in culture medium during developmental stages were examined in this study. The maturation, fertilization and development of embryonic cultures were performed in modified Tissue culture medium (mTCM)-199 supplemented with 10% (v/v) porcine follicular fluid, modified Tyrode's albumin lactate pyruvate (mTALP) medium, and modified North Carolina State University (mNCSU)-23 medium, respectively. In addition, amino acids and dipeptides of different concentrations and combinations were used to treat the embryos. The addition of L-alanyl-L-glutamine (AlnGln)+L-glycyl-L-glutamine (GlyGln) significantly (p<0.05) improved oocyte maturation, fertilization and the incorporation and oxidation of 14C(U)-glucose when compared to the control group and other treatment groups. Additionally, 2-4 cell, 8-16 cell, morula and blastocyst development increased significantly (p<0.05) following treatment with AlnGln+GlyGln when compared to the control group and other treatment groups, while this treatment reduced the accumulation of ammonia. Taken together, these findings suggest that treatment with AlnGln+GlyGln may play an important role in increasing the rate of porcine oocyte maturation, fertilization and embryonic development by reducing the level of accumulated ammonia measured in the culture media.

Keywords

References

  1. Alexiou, M. and H. J. Leese. 1992. Purine utilization, de novo synthesis and degradation in mouse preimplantation embryos. Development 114:185-192.
  2. Biggers, J. D., L. K. McGinnis and J. A. Lawitts. 2004. Enhanced effect of glycyl-L-glutamine on mouse preimplantation embryos in vitro. Reprod. Biomed. Online 9:59-69. https://doi.org/10.1016/S1472-6483(10)62111-6
  3. Christie, A. and M. Butler. 1994. Glutamine-based dipeptides are utilized in mammalian cell culture by extracellular hydrolysis catalyzed by a specific peptidase. J. Biotechnol. 37:277-290. https://doi.org/10.1016/0168-1656(94)90134-1
  4. Eagle, H. 1955. Utilization of dipeptides by mammalian cells in tissue culture. Proc. Soc. Exp. Biol. Med. 89:96-99. https://doi.org/10.3181/00379727-89-21726
  5. Edwards, L. J., D. A. Williams and D. K. Gardner. 1998. Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum. Reprod. 13:3441-3448. https://doi.org/10.1093/humrep/13.12.3441
  6. Eppig, J. J. and M. J. O'Brien. 1998. Comparison of preimplantation developmental competence after mouse oocyte growth and development in vitro and in vivo. Theriogenology 49:415-422. https://doi.org/10.1016/S0093-691X(97)00413-5
  7. Epstein, C. J. and S. A. Smith. 1973. Amino acid uptake and protein synthesis in preimplantation mouse embryos. Dev. Biol. 33:171-184. https://doi.org/10.1016/0012-1606(73)90172-3
  8. Gandhi, A. P., M. Lane, D. K. Gardner and R. L. Krisher. 2001. Substrate utilization in porcine embryos cultured in NCSU23 and G1.2/G2.2 sequential culture media. Mol. Reprod. Dev. 58:269-275. https://doi.org/10.1002/1098-2795(200103)58:3<269::AID-MRD4>3.0.CO;2-L
  9. Gardner, D. K. and M. Lane. 1993. Amino acids and ammonia regulate mouse embryo development in culture. Biol. Reprod. 48:377-385. https://doi.org/10.1095/biolreprod48.2.377
  10. Gardner, D. K. 1998. Changes in requirements and utilisation of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology 49:83-102. https://doi.org/10.1016/S0093-691X(97)00404-4
  11. Hammon, D. S., S. Wang and G. R. Holyoak. 2000. Ammonia concentration in bovine follicular fluid and its effect during in vitro maturation on subsequent embryo development. Anim. Reprod. Sci. 58:1-8. https://doi.org/10.1016/S0378-4320(99)00069-X
  12. Hashem, A., M. S. Hossein, J. Y. Woo, S. Kim, J. H. Kim, S. H. Lee, O. J. Koo, S. M. Park, Lee, E. G., S. K. Kang and B. C. Lee. 2006. Effect of potassium simplex optimization medium and NCSU23 supplemented with beta-mercaptoethanol and amino acids of in vitro fertilized porcine embryos. J. Reprod. Dev. 52:591-599. https://doi.org/10.1262/jrd.18010
  13. Hunter, R. H. and C. Polge. 1966. Maturation of follicular oocytes in the pig after injection of human chorionic gonadotropin. J. Reprod. Fertil.12:525-531.
  14. Johnson, L. A., J. G. Aalbers and H. J. G. Grooten. 1988. Artificial insemination of swine: fecundity of boar semen stored in Beltsville TS (BTS), modified Modena (MM), or MR-A and inseminated on one, three and four days after collection. Reprod. Domest. Anim. 23:49-55. https://doi.org/10.1111/j.1439-0531.1988.tb01080.x
  15. Kim, S. C. and H. W. Kim. 1998. Effects of nitrogenous components of urine on sperm motility: an in vitro study. Int. J. Androl. 21:29-33.
  16. Krisher, R. L., A. M. Brad, J. R. Herrick, M. L. Sparman and J. E. Swain. 2007. A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim. Reprod. Sci. 98:72-96. https://doi.org/10.1016/j.anireprosci.2006.10.006
  17. Lane, M. 2001. Mechanisms for managing cellular and homeostatic stress in vitro. Theriogenology 55:225-236. https://doi.org/10.1016/S0093-691X(00)00456-8
  18. Lane, M. and D. K. Gardner. 1994. Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J. Reprod. Fertil. 102:305-312. https://doi.org/10.1530/jrf.0.1020305
  19. Lane, M. and D. K. Gardner. 2003. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod. 69:1109-1117. https://doi.org/10.1095/biolreprod.103.018093
  20. Lane, M., J. M. Maybach and D. K. Gardner. 2002. Ammonium affects ICM development, metabolism, intracellular pH, and fetal growth rates. Biol. Reprod. 66:104.
  21. Lindenbaum, A. 1973. A survey of naturally occurring chelating ligands. Adv. Exp. Med. Biol. 40:67-77. https://doi.org/10.1007/978-1-4684-3240-4_4
  22. Martinelle, K. and L. Haggstrom. 1993. Mechanisms of ammonia and ammonium ion toxicity in animal cells: transport across cell membranes. J. Biotechnol. 30:339-350. https://doi.org/10.1016/0168-1656(93)90148-G
  23. Newsholme, P. and E. A. Newsholme. 1989. Rates of utilization of glucose, glutamine, and oleate and formation of end-products by mouse peritoneal macrophages in culture. Biochem. J. 261:211-218.
  24. Orsi, N. M. and H. J. Leese. 2004. Ammoniu exposure and pyruvate affect the amino acid metabolism of bovine blastocysts in vitro. Reproduction 127:131-140. https://doi.org/10.1530/rep.1.00031
  25. Parrish, J. J., J. Susko-Parrish, M. A. Winer and N. L. First. 1988. Capacitation of bovine sperm by heparin. Biol. Reprod. 38:1171-1180. https://doi.org/10.1095/biolreprod38.5.1171
  26. Petters, I. W. and M. L. Reed. 1991. Addition of taurine or hypotaurine to culture medium improves development of one- and two-cell pig embryos in vitro. Theriogenology 35:253. https://doi.org/10.1016/0093-691X(91)90229-7
  27. Prior, R. L. and W. J. Visek. 1972. Effects of urea hydrolysis on tissue metabolite concentrations in rats. Am. J. Physiol. 223:1143-1149.
  28. Rooke, J. A., M. Ewen, K. Mackie, M. E. Staines, T. G. McEvoy and K. D. Sinclair. 2004. Effect of ammonium chloride on the growth and metabolism of bovine ovarian granulosa cells and the development of ovine oocytes matured in the presence of bovine granulosa cells previously exposed to ammonium chloride. Anim. Reprod. Sci. 84:53-71. https://doi.org/10.1016/j.anireprosci.2003.12.005
  29. Roth, E., G. Ollenschlager, G. Hamilton, A. Simmel, K. Langer, W. Fekl and R. Jakesz. 1988. Influence of two glutamine-containing dipeptides on growth of mammalian cells. In Vitro Cell Dev. Biol. Anim. 24:696-698. https://doi.org/10.1007/BF02623607
  30. Sinclair, K. D., T. G. McEvoy, C. Carolan, E. K. Maxfield, C. A. Maltin, L. E. Young, I. Wilmut, J. J. Robinson and P. J. Broadbent. 1998. Conceptus growth and development following the culture of ovine embryos in media supplemented with sera. Theriogenology 49:218. https://doi.org/10.1016/S0093-691X(98)90571-4
  31. Snedecor, G. W. and W. G. Cochran. 1989. Statistical methods. 8th edn. The Iowa State University Press, Iowa.
  32. Summers, M. C., L. K. McGinnis, J. A. Lawitts and J. D. Biggers. 2005. Mouse embryo development following IVF in media containing either L-glutamine or glycyl-L-glutamine. Hum. Reprod. 20:1364-1371. https://doi.org/10.1093/humrep/deh756
  33. Tanghe, S., A. Van Soom, H. Nauwynck, M. Coryn and A. de Kruif. 2002. Minireview: functions of the cumulus oophorus during oocyte maturation ovulation, and fertilization. Mol. Reprod. Dev. 61:414-424. https://doi.org/10.1002/mrd.10102
  34. Tareq, K. M. A., A. G. Miah, U. Salma, M. Yoshida and H. Tsujii. 2007. Effect of amino acids and dipeptides on accumulation of ammonia in the medium during in vitro maturation and fertilization of porcine oocytes. Reprod. Med. Biol. 6:165-170. https://doi.org/10.1111/j.1447-0578.2007.00180.x
  35. Tareq, K. M. A., M. S. Hossain, Q. S. Akter, T. Sawada, S. Afrose, K. Hamano and H. Tsujii. 2008. Effect of amino acids and dipeptides on acrosome reaction and accumulation of ammonia in porcine spermatozoa. Reprod. Med. Biol. 7:123-131. https://doi.org/10.1111/j.1447-0578.2008.00209.x
  36. Tareq, K. M. A., Q. S. Akter, M. A. M. Y. Khandoker and H. Tsujii. 2012. Selenium and vitamin E improve the in vitro maturation, fertilization and culture to blastocyst of porcine oocytes. J. Reprod. Dev. 58:621-628. https://doi.org/10.1262/jrd.2012-064
  37. Tareq, K. M. A., R. Obata, A. G. Miah, K. Hamano and H. Tsujii. 2005. Ammonia concentration in porcine ovarian developing follicles. J. Mamm. Ova. Res. 22:185-189. https://doi.org/10.1274/jmor.22.185
  38. Thouas, G. A., N. A. Korfiatis, A. J. French, G. M. Jones and A. O. Trounson. 2001. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod. Biomed. Online 3:25-29. https://doi.org/10.1016/S1472-6483(10)61960-8
  39. Tsujii, H., M. Muranaka and K. Hamano. 2002. Culture of in vitro mouse embryos with vitamin E improves development. J. Reprod. Dev. 48:25-29. https://doi.org/10.1262/jrd.48.25
  40. Tsujii, H., J. H. Lee, M. S. Hossain, K. M. A. Tareq, K. Hamano and T. Sawada. 2009. The beneficial effect of fructose and glucose on in vitro maturation and the fertilization of porcine oocytes. Reprod. Med. Biol. 8:19-24. https://doi.org/10.1007/s12522-008-0003-8
  41. Virant-Klun, I., T. Tomazevic, E. Vrtacnik-Bokal, A. Vogler, M. Krsnik and H. Meden-Vrtovec. 2006. Increased ammonium in culture medium reduces the development of human embryos to the blastocyst stage. Fertil. Steril. 85:526-528. https://doi.org/10.1016/j.fertnstert.2005.10.018
  42. Visek, W. J., G. M. Kolodny and P. R. Gross. 1972. Ammonia effects in cultures of normal and transformed 3T3 cells. J. Cell. Physiol. 80:373-381. https://doi.org/10.1002/jcp.1040800308
  43. Yuan, Y. and R. L. Krisher. 2010. Effect of ammonium during in vitro maturation on oocyte nuclear maturation and subsequent embryonic development in pigs. Anim. Reprod. Sci. 117:302-307. https://doi.org/10.1016/j.anireprosci.2009.05.012
  44. Zander, D. L., J. G. Thompson and M. Lane. 2006. Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biol. Reprod. 74:288-294. https://doi.org/10.1095/biolreprod.105.046235