DOI QR코드

DOI QR Code

Tuning Photophysical and Electrochemical Properties of Heteroleptic Cationic Iridium(III) Complexes Containing Substituted 2-Phenylquinoxaline and Biimidazole

  • Sengottuvelan, Nallathambi (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Seo, Hoe-Joo (Department of Chemistry, Pusan National University) ;
  • Kang, Sung-Kwon (Department of Chemistry, Chungnam National University) ;
  • Kim, Young-Inn (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University)
  • Received : 2010.04.22
  • Accepted : 2010.06.28
  • Published : 2010.08.20

Abstract

Design and syntheses of four red phosphorescent heteroleptic cationic iridium(III) complexes containing two substituted phenylquinoxaline (pqx) or benzo[b]thiophen-2-yl-pyridin (btp) main ligands and one 2,2'-biimidazole (H2biim) ancillary ligand are reported: [$(pqx)_2$Ir(biim)]Cl (1), [$(dmpqx)_2$Ir(biim)]Cl (2), [$(dfpqx)_2$Ir(biim)]Cl (3), [$(btp)_2$Ir(biim)]Cl (4). Complex 1 showed a distorted octahedral geometry around the iridium(III) metal ion with cis metallated carbons and trans nitrogen atoms. The absorption, emission and electrochemical properties were systematically evaluated. The complexes exhibited red phosphorescence in the spectral range of 580 to 620 nm with high quantum efficiencies of 0.58 - 0.78 in both solution and solid-state at room temperature depending on the cyclometalated main ligands. The cyclic voltammetry of the complexes (1-3) showed a metal-centered irreversible oxidation in the range of 1.40 to 1.90 V as well as two quasi reversible reduction waves from -1.15 to -1.45 V attributed to the sequential addition of two electrons to the more electron accepting heterocyclic portion of two distinctive cyclometalated main ligands, whereas complex 4 showed a reversible oxidation potential at 1.24 V and irreversible reduction waves at -1.80 V.

Keywords

References

  1. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. https://doi.org/10.1021/ja003693s
  2. Thomas, K. R.; Velusamy, M.; Lin, J. T.; Chien, C. H.; Tao, Y. T.; Wen, Y. S.; Hu, Y. H.; Chou, P. T. Inorg. Chem. 2005, 44, 5677. https://doi.org/10.1021/ic050385s
  3. Lu, W.; Mi, B. X.; Chan, M. C. W.; Hui, Z.; Che, C. M.; Zhu, N.; Lee, S. T. J. Am. Chem. Soc. 2004, 126, 4958. https://doi.org/10.1021/ja0317776
  4. Kim, D.-H.; Hong, C.-K.; Lee, P. H.; Kang, Y. Bull. Korean Chem. Soc. 2008, 29, 2270. https://doi.org/10.5012/bkcs.2008.29.11.2270
  5. Ma, A.-F.; Seo, H.-J.; Jin, S.-H.; Yoon, Y. C.; Hyun, M.-H.; Kim, Y.-I. Bull. Korean Chem. Soc. 2009, 30, 2754. https://doi.org/10.5012/bkcs.2009.30.11.2754
  6. Seo, H.-J.; Yoo, K.-M.; Song, M.; Park, J. S.; Jin, S.-H.; Kim, Y.-I.; Kim, J.-J. Org. Electr. 2010, 11, 564. https://doi.org/10.1016/j.orgel.2009.12.014
  7. Marco, D. G.; Lanza, M.; Mamo, A.; Stefio, I.; Pietro, D. C.; Romeo, G.; Campagna, S. Anal. Chem. 1998, 70, 5019. https://doi.org/10.1021/ac980234p
  8. Goodall, W.; Williams, J. A. G. J. Chem. Soc., Dalton Trans. 2000, 2893.
  9. Lo, K. K. W.; Chan, J. S. W.; Lui, L. H.; Chung, C. K. Organometallics 2004, 23, 3108. https://doi.org/10.1021/om0499355
  10. Lo, K. K. W.; Chung, C. K.; Lee, T. K. M.; Lui, L. H.; Tsang, K. H. K.; Zhu, N. Inorg. Chem. 2003, 42, 6886. https://doi.org/10.1021/ic0346984
  11. Nazeeruddin, M. K.; Wegh, R. T.; Zhou, Z.; Klein, C.; Wang, Q.; De Angelis, F.; Fantacci, S.; Grätzel, M. Inorg. Chem. 2006, 45, 9245. https://doi.org/10.1021/ic060495e
  12. Slinker, J.; Bernards, D.; Houston, P. L.; Abruna, H. D.; Bernhard, S.; Malliaras, G. G. Chem. Commun. 2003, 2392.
  13. Handy, E. S.; Pal, A. J.; Rubner, M. F. J. Am. Chem. Soc. 1999, 121, 3525. https://doi.org/10.1021/ja984163n
  14. Gao, F. G.; Bard, A. J. J. Am. Chem. Soc. 2000, 122, 7426. https://doi.org/10.1021/ja000666t
  15. Goldsmith, J. I.; Hudson, W. R.; Lowry, M. S.; Anderson, T. H.; Bernhard, S. J. Am. Chem. Soc. 2005, 127, 7502. https://doi.org/10.1021/ja0427101
  16. Bolink, H. J.; Cappelli, L.; Coronado, E.; Grätzel, M.; Ortí, E.; Costa, R. D.; Viruela, P. M.; Nazeeruddin, M. J. Am. Chem. Soc. 2006, 128, 14787.
  17. Freys, J. C.; Bernardinellib, G.; Wenger, O. S. Chem. Commun. 2008, 4267.
  18. Grushin, V. V.; Herron, N.; LeCloux, D. D.; Marshall, W. J.; Petrov, V. A.; Wang, Y. Chem. Commun. 2001, 1494.
  19. Frampton, M. J.; Namdas, E. B.; Lo, S.-C.; Burn, P. L.; Samuel, I. D. W. J. Mater. Chem. 2004, 14, 2881. https://doi.org/10.1039/b400160e
  20. Xiao, J. C.; Shreeve, J. M. J. Org. Chem. 2005, 70, 3072. https://doi.org/10.1021/jo0501083
  21. SMART V5.05 Software for CCD Detector System; Bruker Analytical X-ray Systems, madison, WI, 1998.
  22. SAINTPLUS, V5.00 Software for the CCD Detector System;Bruker Analytical X-ray System, Inc.: Madison, WI, 1998.
  23. SADABS. Program for absorption correction using SMART CCD based on the method of Blessing, R. H. Acta Crystallogr. 1995, A51, 33.
  24. Sheldrick, G. M. SHELXTL, V6.1; Bruker Analytical X-ray systems, Inc.: madison, WI, 1997.
  25. Fortin, S.; Fabre, P.-L.; Dartiguenave, M.; Beauchamp, A. L. J. Chem. Soc., Dalton Trans. 2001, 3520.
  26. Stout, G. H.; Jensen, L. H. X-Ray Structure Determination, A Practical Guide; The Macmillan Company: London, 1968.
  27. Jeffrey, G. A.; Maluszynska, H.; Mitra, J. Int. J. Biol. Macromol. 1985, 7, 336. https://doi.org/10.1016/0141-8130(85)90048-0
  28. Rasmussen, P. G.; Bailey, O. H.; Bayon, J. C.; Butler, W. M. Inorg. Chem. 1984, 23, 338. https://doi.org/10.1021/ic00171a014
  29. Zhao, Q.; Liu, S.; Shi, M.; Wang, C.; Yu, M.; Li, L.; Li, F.; Yi, T.;Huang, C. Inorg. Chem. 2006, 45, 6152. https://doi.org/10.1021/ic052034j
  30. Graces, F. O.; King, K. A.; Watts, R. J. Inorg. Chem. 1988, 27, 3464. https://doi.org/10.1021/ic00293a008
  31. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.;Kwong, R.; Tsyba, I.; Bortz, M.; Mui, B.; Bau, R.; Thompson, M. E. Inorg. Chem. 2001, 40, 1704. https://doi.org/10.1021/ic0008969
  32. Xie, H. Z.; Liu, M. W.; Wang, O. Y.; Zhang, X. H.; Lee, C. S.;Hung, L. S.; Lee, S. T.; Teng, P. F.; Kwong, H. L.; Zheng, H.; Che, C. M. Adv. Mater. 2001, 13, 1245. https://doi.org/10.1002/1521-4095(200108)13:16<1245::AID-ADMA1245>3.0.CO;2-J
  33. Jung, S.; Kang, Y.; Kim, H.; Kim, Y.; Lee, C.; Kim, J.; Lee, S.; Kwon, S. Eur. J. Inorg. Chem. 2004, 3415.
  34. Wilde, A. P.; King, K. A.; Watts, R. J. J. Phys. Chem. 1991, 95, 629. https://doi.org/10.1021/j100155a026
  35. Ge, G.; Zhang, G.; Guo, H.; Chuai, Y.; Zou, D. Inorg. Chim. Acta 2009, 362, 2231. https://doi.org/10.1016/j.ica.2008.10.001
  36. Hwang, F.-M.; Chen, H.-Y.; Chen, P.-S.; Liu, C.-S.; Chi, Y.; Shu, C.-F.; Wu, F.-I.; Chou, P.-T.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 2005, 44, 1344. https://doi.org/10.1021/ic0489443
  37. Ding, J.; Gao, J.; Fu, Q.; Cheng, Y.; Ma, D.; Wang, L. Syn. Met. 2005, 155, 539. https://doi.org/10.1016/j.synthmet.2005.08.034
  38. CCDC No. 671925
  39. Dragonetti, C.; Falciola, L.; Mussini, P.; Righetto, S.; Roberto, D.; Ugo, R.; Valore, A.; Angelis, D. F.; Fantacci, S.; Sgamellotti, A.; Ramon, M.; Muccini, M. Inorg. Chem. 2007, 46, 8533. https://doi.org/10.1021/ic700414z
  40. Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A., Jr.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712. https://doi.org/10.1021/cm051312+

Cited by

  1. Red-Orange Emissive Cyclometalated Neutral Iridium(III) Complexes and Hydridoiridium(III) Complex Based on 2-Phenylquinoxaline : Structure, Photophysics and Reactivity of Acetylacetone Towards Cyclometalated Iridium Dimer vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4321
  2. A Comprehensive Survey of Cationic Iridium(III) Complexes Bearing Nontraditional Ligand Chelation Motifs vol.2013, pp.17, 2013, https://doi.org/10.1002/ejic.201300171
  3. ) complexes vol.174, pp.1364-5498, 2014, https://doi.org/10.1039/C4FD00107A
  4. Structural characteristics of iridium dual-emitter organometallic compound vol.29, pp.23, 2014, https://doi.org/10.1557/jmr.2014.337
  5. Recognition of fractional non-innocent feature of osmium coordinated 2,2′-biimidazole or 2,2′-bis(4,5-dimethylimidazole) and their interactions with anions vol.44, pp.29, 2015, https://doi.org/10.1039/C5DT01763G
  6. Spectroscopic, Electrochemical and DFT Studies of Phosphorescent Homoleptic Cyclometalated Iridium(III) Complexes Based on Substituted 4-Fluorophenylvinyl- and 4-Methoxyphenylvinylquinolines vol.10, pp.10, 2017, https://doi.org/10.3390/ma10101061
  7. Supramolecular architectures built of chain-like [PnCl5]2- (Pn=Sb, Bi) and protonated 2,2'-biimidazole: Synthesis, crystal structures and characterizations vol.1006, pp.1, 2010, https://doi.org/10.1016/j.molstruc.2011.10.001
  8. Supramolecular architectures built of chain-like [PnCl5]2- (Pn=Sb, Bi) and protonated 2,2'-biimidazole: Synthesis, crystal structures and characterizations vol.1006, pp.1, 2010, https://doi.org/10.1016/j.molstruc.2011.10.001
  9. Blue Emitting Cationic Iridium Complexes Containing Two Substituted 2-Phenylpyridine and One 2,2'-Biimidazole for Solution-Processed Organic Light-Emitting Diodes (OLEDs) vol.33, pp.11, 2012, https://doi.org/10.5012/bkcs.2012.33.11.3645
  10. Highly Efficient Red Emissive Heteroleptic Cyclometalated Iridium(III) Complexes Bearing Two Substituted 2-Phenylquinoxaline and One 2-Pyrazinecarboxylic Acid vol.34, pp.1, 2013, https://doi.org/10.5012/bkcs.2013.34.1.167
  11. Polysubstituted Ligand Framework for Color Tuning Phosphorescent Iridium(III) Complexes vol.60, pp.20, 2010, https://doi.org/10.1021/acs.inorgchem.1c02121