DOI QR코드

DOI QR Code

Investigation on effect of surface properties on droplet impact cooling of cladding surfaces

  • Wang, Zefeng (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Qu, Wenhai (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Xiong, Jinbiao (School of Nuclear Science and Engineering, Shanghai Jiao Tong University) ;
  • Zhong, Mingjun (State Key Laboratory of Reactor System Design Technology, Nuclear Power Institute of China) ;
  • Yang, Yanhua (School of Nuclear Science and Engineering, Shanghai Jiao Tong University)
  • Received : 2019.04.13
  • Accepted : 2019.08.29
  • Published : 2020.03.25

Abstract

During transients or accidents, the reactor core is uncovered, and droplets entrained above the quench front collides with the uncovered fuel rod surface. Droplet impact cooling can reduce the peak cladding temperature. Besides zirconium-based cladding, versatile accidental tolerant fuel (ATF) claddings, including FeCrAl, have been proposed to increase the accident coping time. In order to investigate the effect of surface properties on droplet impact cooling of cladding surfaces, the droplet impact phenomena are photographed on the FeCrAl and zircaloy-4 (Zr-4) surfaces under different conditions. On the oxidized FeCrAl surface, the Leidenfrost phenomenon is not observed even when the surface temperature is as high as 550 ℃ with We > 30. Comparison of the impact behaviors observed on different materials shows that nucleate and transition boiling is more intensive on surfaces with larger thermal conductivity. The Leidenfrost point temperature (LPT) decreases with the solid thermal effusivity (${\sqrt{k{\rho}C_p}}$). However, the CHF temperature is relatively insensitive to the surface oxidation and Weber number. Droplet spreading diameter is analyzed quantitatively in the film boiling stage. Based on the energy balance a correlation is proposed for droplet maximum spreading factor. A mechanistic model is also developed for the LPT based on homogeneous nucleation theory.

Keywords

References

  1. K.S. Hamdan, D.-E. Kim, S.-K. Moon, Droplets behavior impacting on a hot surface above the Leidenfrost temperature, Ann. Nucl. Energy 80 (2015) 338-347. https://doi.org/10.1016/j.anucene.2015.02.021
  2. R. Wendelstorf, K.-H. Spitzer, J. Wendelstorf, Effect of oxide layers on spray water cooling heat transfer at high surface temperatures, Int. J. Heat Mass Transf. 51 (19-20) (2008) 4892-4901. https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.033
  3. J. Sinha, Effects OF surface roughness, oxidation level, and liquid subcooling ON the minimum film boiling temperature, Exp. Heat Transf. 16 (1) (2003) 45-60. https://doi.org/10.1080/08916150390126478
  4. J. Buongiorno, Can corrosion and CRUD actually improve safety margins in LWRs? Ann. Nucl. Energy 63 (2014) 9-21. https://doi.org/10.1016/j.anucene.2013.07.019
  5. J.D. Bernardin, C.J. Stebbins, I. Mudawar, Effects of surface roughness on water droplet impact history and heat transfer regimes, Int. J. Heat Mass Transf. 40 (1) (1996) 73-88. https://doi.org/10.1016/S0017-9310(96)00067-1
  6. S.Y. Misyura, The effect of Weber number, droplet sizes and wall roughness on crisis of droplet boiling, Exp. Therm. Fluid Sci. 84 (2017) 190-198. https://doi.org/10.1016/j.expthermflusci.2017.02.014
  7. E.-S.R. Negeed, S. Hidaka, M. Kohno, Y. Takata, Effect of the surface roughness and oxidation layer on the dynamic behavior of micrometric single water droplets impacting onto heated surfaces, Int. J. Therm. Sci. 70 (2013) 65-82. https://doi.org/10.1016/j.ijthermalsci.2013.03.004
  8. Z. Wang, J. Xiong, W. Yao, W. Qu, Y. Yang, Experimental investigation on the Leidenfrost phenomenon of droplet impact on heated silicon carbide surfaces, Int. J. Heat Mass Transf. 128 (2019) 1206-1217. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.091
  9. H. Kim, B. Truong, J. Buongiorno, L.-W. Hu, On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena, Appl. Phys. Lett. 98 (8) (2011), 083121. https://doi.org/10.1063/1.3560060
  10. M.A.J. van Limbeek, M. Shirota, P. Sleutel, C. Sun, A. Prosperetti, D. Lohse, Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature, Int. J. Heat Mass Transf. 97 (2016) 101-109. https://doi.org/10.1016/j.ijheatmasstransfer.2016.01.080
  11. K. Baumeister, F. Simon, Leidenfrost temperaturedits correlation for liquid metals, cryogens, hydrocarbons, and water, J. Heat Transf. 95 (2) (1973) 166-173. https://doi.org/10.1115/1.3450019
  12. S. Nishio, M. Hirata, Direct contact phenomenon between a liquid droplet and high temperature solid surface, in: Sixth International Heat Transfer Conference, 1978, pp. 245-250.
  13. M. Rein, Drop-surface Interactions, Springer, 2014.
  14. A.L. Yarin, et al., Drop impact dynamics: splashing, spreading, receding, bouncing, Annu. Rev. Fluid Mech. 38 (2006) 159-192. https://doi.org/10.1146/annurev.fluid.38.050304.092144
  15. G. Liang, I. Mudawar, Review of drop impact on heated walls, Int. J. Heat Mass Transf. 106 (2017) 103-126. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.031
  16. T. Tran, H.J. Staat, A. Prosperetti, C. Sun, D. Lohse, Drop impact on superheated surfaces, Phys. Rev. Lett. 108 (3) (2012), 036101. https://doi.org/10.1103/PhysRevLett.108.036101
  17. T. Tran, H.J. Staat, A. Susarrey-Arce, T.C. Foertsch, A. van Houselt, H.J. Gardeniers, A. Prosperetti, D. Lohse, C. Sun, Droplet impact on superheated micro-structured surfaces, Soft Matter 9 (12) (2013) 3272-3282. https://doi.org/10.1039/c3sm27643k
  18. R.K. Shah, A.L. London, Chapter VI - parallel plates, in: R.K. Shah, A.L. London (Eds.), Laminar Flow Forced Convection in Ducts, Academic Press, 1978, pp. 153-195.
  19. T. Tran, H.J.J. Staat, A. Prosperetti, C. Sun, D. Lohse, Drop impact on superheated surfaces, Phys. Rev. Lett. 108 (3) (2012), 036101. https://doi.org/10.1103/PhysRevLett.108.036101
  20. C. Mundo, M. Sommerfeld, C. Tropea, Droplet-wall collisions: experimental studies of the deformation and breakup process, Int. J. Multiph. Flow 21 (2) (1995) 151-173. https://doi.org/10.1016/0301-9322(94)00069-V
  21. G.E. Cossali, A. Coghe, M. Marengo, The impact of a single drop on a wetted solid surface, Exp. Fluid 22 (6) (1997) 463-472. https://doi.org/10.1007/s003480050073
  22. S. Chandra, C. Avedisian, On the collision of a droplet with a solid surface, Proc. R. Soc. Lond. Ser A Math. Phys. Sci. 432 (1884) (1991) 13-41.
  23. T. Mao, D.C. Kuhn, H. Tran, Spread and rebound of liquid droplets upon impact on flat surfaces, AIChE J. 43 (9) (1997) 2169-2179. https://doi.org/10.1002/aic.690430903
  24. M. Pasandideh-Fard, Y. Qiao, S. Chandra, J. Mostaghimi, Capillary effects during droplet impact on a solid surface, Phys. Fluids 8 (3) (1996) 650-659. https://doi.org/10.1063/1.868850
  25. S.-C. Yao, K.Y. Cai, The dynamics and Leidenfrost temperature of drops impacting on a hot surface at small angles, Exp. Therm. Fluid Sci. 1 (4) (1988) 363-371. https://doi.org/10.1016/0894-1777(88)90016-7
  26. V. Bertola, K. Sefiane, Controlling secondary atomization during drop impacton hot surfaces by polymer additives, Phys. Fluids 17 (10) (2005), 108104. https://doi.org/10.1063/1.2112667
  27. P.J. Berenson, Film-boiling heat transfer from a horizontal surface, J. HeatTransf. 83 (3) (1961) 351-356. https://doi.org/10.1115/1.3682280
  28. P.J. Berenson, Film-boiling heat transfer from a horizontal surface, Trans.ASME J. Heat Transf. 83 (3) (1960) 351-356. https://doi.org/10.1115/1.3682280
  29. H.J. Spiegler P, M. Silberberg, et al., Onset of stable film boiling and the foamlimit, Int. J. Heat Mass Transf. 6 (11) (1963) 987-989. https://doi.org/10.1016/0017-9310(63)90053-X
  30. M. Blander, J.L. Katz, Bubble nucleation in liquids, AIChE J. 21 (5) (1975)833-848. https://doi.org/10.1002/aic.690210502

Cited by

  1. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces vol.13, pp.38, 2021, https://doi.org/10.1021/acsami.1c09217
  2. Thermosuperrepellency of a hot substrate caused by vapour percolation vol.4, pp.1, 2021, https://doi.org/10.1038/s42005-021-00680-7