• Title/Summary/Keyword: Overhead lines

Search Result 296, Processing Time 0.585 seconds

Installation methods of OPGW for 765kV overhead power transmission lines (765kV 가공 송전선로용 OPGW 시설공법)

  • Kwan, Y.G.;Kim, Y.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1641-1643
    • /
    • 1998
  • In recent the maximum voltage of overhead power transmission lines in Korea was upgraded to 765kV. In general a overhead ground wire is installed for protecting overhead power transmission lines from lightning. For the 765kV line, Composite Overhead Ground Wire with Optic Fiber (OPGW) is applied as a overhead ground wire and have a function of the communication line between substations. In this paper, the construction and properties of OPGW, and its installation methods are discribed.

  • PDF

Development of Optimal Sensor for Diagnostic System in Overhead Distribution Power Lines (가공 배전선로 진단시스템을 위한 최적 센서 개발)

  • Lee, Kyeong-Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.670-675
    • /
    • 2015
  • Degradation diagnosis of cable is one of major issues for operation and maintenance in overhead distribution power lines. The diagnostic system for overhead power lines is composed of three parts in functional aspect - a travelling unit, a sensing unit and a communication unit. Among them, sensor detects the defects such as corrosion and disconnecting of power lines. Performance of sensor is very important, and besides, the size and structure of sensor is restricted for installation to small and lightweight diagnostic system. This paper suggests an optimal eddy current sensor best suit for small and lightweight diagnostic system in consideration of detecting performance, size and ease of installation and so on. Proposed sensor has been designed by Drum core structure and can be applied to the all domestic overhead power lines regardless of the cross-sectional areas. Also, it is showed that results of mock environmental test are satisfied.

Maintenance Priority Index of Overhead Transmission Lines for Reliability Centered Approach

  • Heo, Jae-Haeng;Kim, Mun-Kyeom;Kim, Dam;Lyu, Jae-Kun;Kang, Yong-Cheol;Park, Jong-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1248-1257
    • /
    • 2014
  • Overhead transmission lines are crucial components in power transmission systems. Well-designed maintenance strategy for overhead lines is required for power utilities to minimize operating costs, while improving the reliability of the power system. This paper presents a maintenance priority index (MPI) of overhead lines for a reliability centered approach. Proposed maintenance strategy is composed of a state index and importance indices, taking into account a transmission condition and importance in system reliability, respectively. The state index is used to determine the condition of overhead lines. On the other hand, the proposed importance indices indicate their criticality analysis in transmission system, by using a load effect index (LEI) and failure effect index (FEI). The proposed maintenance method using the MPI has been tested on an IEEE 9-bus system, and a numerical result demonstrates that our strategy is more cost effective than traditional maintenance strategies.

A An Experimental Study for Load Capacity and Dip Characteristic in Overhead Transmission Lines (가공송전선의 부하용량과 이도 특성에 관한 실험적 연구)

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.177-183
    • /
    • 2010
  • Overhead transmission lines in domestic area have been built by several different design standards of dip and ground clearance. This paper describes an experimental study for evaluating load capacity and dip margin in overhead transmission lines. Such design standards for selection of overhead transmission conductors, dip and ground clearance, as well as electrical equipment technical standard are discussed. Based on daily load and weather data, several characteristics such as line utilization factor, load factor, conductor temperature and dip, etc. are analyzed, and compared with the specified levels of design standards. As a result, it is verified that DLR method can be a clue of the solving of the problem, for occurring in old transmission conductors which may be rarely operating below standards.

Development of a Computer Program for Analysis of Induced Lightning Overvoltages on Overhead Distribution Lines (가공배전선로 유도뢰 해석 프로그램 개발)

  • Lee, Young-Han;Jung, Dong-Hak;Ha, Bok-Nam;NamKung, Do;Yoo, Hyun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.683-685
    • /
    • 1996
  • A computer program for calculation of induced lightning overvoltages on the multiconductor overhead distribution lines has been developed. This program is very useful in a wide range of applications for investigating the effects on distribution lines of lightning protection equipment such as lightning arresters, overhead ground wire and arcing devices.

  • PDF

A Study on Overvoltage Reduction Method of Single Point Bonded Section on Combined Transmission Lines (혼합송전선로 편단접지 구간 과전압 저감 방안에 관한 연구)

  • Jung, Chae-Kyun;Kang, Ji-Won;Park, Hung-Sok;Kim, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1881-1887
    • /
    • 2009
  • This paper discusses the effects of ECC (Earth Continuity Conductor) for reducing the level of induced sheath overvoltages at the single point bonded section of combined transmission lines which are mixed underground power cable with overhead line in one T/L. In previous papers, the characteristics of ECC on only underground power cable systems were sufficiently analyzed. However, the result of only underground power cable systems are totally different from that of combined transmission lines because ECC is commonly grounded with overhead grounding wire at mesh of cable head. Therefore, in this paper, the installation effects of ECC have been variously analyzed considering the three kinds of fault positions, cable formation of duct and trefoil, spacing between phase conductor and ECC, and the change of overhead transmission line section length on 154kV combined transmission line. Finally, simulation results show that ECC can effectively reduce the induced sheath voltage.

Characteristics of Wind Noise from Overhead Transmission Facilities (가공 송전설비의 소음 특성)

  • 추장희;김상범;신구용;이성두;이동일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.465-472
    • /
    • 2001
  • This paper describes the characteristics of wind induced noise from high-voltage overhead transmission facilities which include transmission lines. insulator strings. and aviation beacon spheres installed on the overhead ground wires. High-voltage overhead transmission lines generate an audible wind noise due to the alternate shedding of wind-induced vortices. The frequency spectrum from the insulator strings reveals its resonance peak. This resonance sound mechanism has been supposed the self-excitation phenomenon of the resonance and the velocity fluctuation. The booming noises from the aviation beacon spheres are detected and analysed.

  • PDF

A Simulator for Calculating Normal Induced Voltage on Communication Line

  • Heo, Jeong-Yong;Seo, Hun-Chul;Lee, Soon-Jeong;Kim, Yoon Sang;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1394-1400
    • /
    • 2014
  • The current flowing through the overhead transmission lines causes induced voltage on the communication lines, which can be prevented by calculating the induced voltage at the planning stage for overhead transmission line installment through an agreement between the communication and electric power companies. The procedures to calculate the induced voltages, however, are complicated due to the variety of parameters and tower types of the overhead transmission lines. The difficulty necessitates the development of a simulator to measure the induced voltage on the communication lines. This paper presents two simulators developed for this purpose; one using the Data Base (DB) index method and the other using the Graphic User Interface (GUI) method. The simulators described in this paper have been implemented by the EMTP (Electromagnetic Transient Program).

Progress and application on the insulation design of overhead transmission line in Korea (국내 가공송전선로 절연설계기술의 발전 및 적용)

  • Yoo, Chol-Hwan;Kim, Kyeong-Ho;Park, Soon-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.416-418
    • /
    • 2000
  • Main power transmission network in Korea is consist of 154kV, 345kV transmission lines. Also 765kV transmission lines are on construction currently. There are some differences in the insulation design concept, methods and contents on 154kV, 345kV and 765kV overhead transmission lines respectively. In this paper, we described and summarized the applied insulation design concept, methods and features on each transmission lines.

  • PDF

Development of overhead distribution line diagnosis system program (가공 배전선로 진단시스템 프로그램 개발)

  • Dong Hyun Chung;Deok Jin Lee
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.81-87
    • /
    • 2023
  • In this paper, accidents in high-voltage overhead distribution lines, which provide stable power supply in the power system, cause inconvenience in life and disruption of production of companies. 22.9 [kV] high-voltage overhead power distribution lines aim to improve reliability and stability, such as damage caused by rain, snow, wind, etc., or electric shock prevention. Therefore, in order to prevent wire disconnection accidents due to deterioration of electrical conductivity or tensile strength due to corrosion of overhead distribution lines, it is necessary to prevent unexpected accidents in the future through regular inspection and repair. In order to diagnose deterioration due to corrosion of distribution lines, a diagnostic system (measuring instrument) is installed on the wires to monitor the condition of the wires. The manager on the ground receives the measured data through ZigBee wireless communication, controls the diagnosis system through the diagnosis system program, and grasps the condition of the overhead distribution line through the measured data and photographed photos, and predicts the life of the wire along with the visual inspection method. developed a program.