• 제목/요약/키워드: Output feedback system

검색결과 781건 처리시간 0.028초

An Output Feedback Controller for a Ball and Beam System under Measurement Noise of Feedback Sensor (센서에 측정에러가 있는 볼-빔 시스템의 출력 궤환 제어기)

  • Kim, Hyun-Do;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제17권10호
    • /
    • pp.955-959
    • /
    • 2011
  • In this paper, we assume that an output sensor of a ball and beam system is coupled with AC measurement noise. We propose an output feedback controller for a ball and beam system under measurement noise of feedback sensor. Measurement noise makes feedback signals distorted, and results in performance degradation or even system failure. Therefore, we need to design a robust controller to accommodate the possible measurement noise in the feedback information. Our controller is equipped with a gain-scaling factor to minimize the effect of measurement noise in output feedback information. We give an analysis of the controlled system and illustrate the improved control performance via simulation and experiment for a ball and beam system.

Design of a dynamic output feedback law for replacing the output derivatives

  • Son, Young-I.;Shim, Hyung-Bo;Jo, Nam-H.;Kim, Kab-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.337-341
    • /
    • 2003
  • This paper provides a design method for a dynamic output feedback controller which stabilizes a class of linear time invariant systems. We suppose all the states of the given system is not measurable and only the outputs are used to stabilize the system. The systems considered cannot be stabilized by a static output feedback only. In the scheme we first assume that the given system can be stabilized by a state feedback composed of its output, velocity of the output and its higher order derivative terms. Instead of using the derivatives of the output, however, a dynamic system is constructed systematically which replaces the role of the derivative terms. Then, a high-gain output feedback stabilizes the composite system together with the newly constructed system. The performance of the proposed control law is illustrated in the comparative simulation studies of a numerical example with an observer-based control law.

  • PDF

Web Tension Control Using Output Feedback

  • Oh, Seung-Rohk
    • Journal of IKEEE
    • /
    • 제11권4호
    • /
    • pp.213-218
    • /
    • 2007
  • We consider a web transport system. The objective of this paper is to design the output feedback controller such that the controller can track a desired tension and processing speed on web transport system. We propose the new design method using observer and feedback linearization technique. The proposed method use a nonlinear feedback to transform to linear system and high gain observer to estimate the state value. We show that the proposed controller can achieve the control object using only output. We show a performance of controller via the simulation.

  • PDF

Construction Algorithm of Grassmann Space Parameters in Linear Output Feedback Systems

  • Kim Su-Woon
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.430-443
    • /
    • 2005
  • A general construction algorithm of the Grassmann space parameters in linear systems - so-called, the Plucker matrix, 'L' in m-input, p-output, n-th order static output feedback systems and the Plucker matrix, $'L^{aug}'$ in augmented (m+d)-input, (p+d)-output, (n+d)-th order static output feedback systems - is presented for numerical checking of necessary conditions of complete static and complete minimum d-th order dynamic output feedback pole-assignments, respectively, and also for discernment of deterministic computation condition of their pole-assignable real solutions. Through the construction of L, it is shown that certain generically pole-assignable strictly proper mp > n system is actually none pole-assignable over any (real and complex) output feedbacks, by intrinsic rank deficiency of some submatrix of L. And it is also concretely illustrated that this none pole-assignable mp > n system by static output feedback can be arbitrary pole-assignable system via minimum d-th order dynamic output feedback, which is constructed by deterministic computation under full­rank of some submatrix of $L^{aug}$.

A New Approach to Design of a Dynamic Output Feedback Stabilizing Control Law for LTI Systems

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon;Kim Kab-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.618-624
    • /
    • 2005
  • We present a new state-space approach to construct a dynamic output feedback controller which stabilizes a class of linear time invariant systems. All the states of the given system are not measurable and only the output is used to design the stabilizing control law. In the design scheme, however, we first assume that the given system can be stabilized by a feedback law composed of the output and its derivatives of a certain order. Beginning with this assumption, we systematically construct a dynamic system which removes the need of the derivatives. The main advantage of the proposed controller is regarding the controller order, which may be smaller than that of conventional output feedback controller. Using a simple numerical example, it is shown that the order of the proposed controller is indeed smaller than that of reduced-order observer based output feedback controller.

Decentralized Input-Output Feedback Linearizing Control for a Multi-Machine Power System using Output Modification (수정된 출력을 이용한 다기 전력 계통의 분살 입출력 되먹임 선형화 제어)

  • Jee, Hwang;Yoon, Tae-Woong;Kim, Seok-Kyoon
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.291-294
    • /
    • 2006
  • This paper presents a decentralized input-output feedback linearizing controller for a multi-machine power system. Firstly, the controller is designed using input-output feedback linearization for modified outputs. Then we present a guideline for selecting gains of the controller and parameters in the modified outputs. Simulations illustrate the effectiveness of the proposed control scheme and the selection guideline.

  • PDF

Adaptive Output-feedback Neural Control for Strict-feedback Nonlinear Systems (strict-feedback 비선형 시스템의 출력궤환 적응 신경망 제어기)

  • Park Jang-Hyun;Kim Il-Whan;Kim Seong-Hwan;Moon Chae-Joo;Choi Jun-Ho
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.526-528
    • /
    • 2006
  • An adaptive output-feedback neural control problem of SISO strict-feedback nonlinear system is considered in this paper. The main contribution of the proposed method is that it is shown that the output-feedback control of the strict-feedback system can be viewed as that of the system in the normal form. As a result, proposed output-feedback control algorithm is much simpler than the previous backstepping-based controllers. Depending heavily on the universal approximation property of the neural network (NN) only one NN is employed to approximate lumped uncertain nonlinearity in the controlled system.

  • PDF

Design and Analysis of an Output Feedback Controller for a Chain of Integrators System Compensating Measurement Noise of Feedback Sensor (적분기 시스템에서 센서의 측정에러를 보상하는 출력 궤환 제어기 설계 및 분석)

  • Kim, Hyun-Do;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제17권4호
    • /
    • pp.299-303
    • /
    • 2011
  • In this paper, we propose an output feedback controller for a chain of integrators system compensating measurement noise of feedback sensor. Measurement noise makes feedback signals distorted, and results in performance degradation or even system failure. Therefore, we need to design a robust controller to accommodate the possible measurement noise in the feedback information. Our controller is equipped with a gain-scaling factor to reject or minimize the effect of measurement noise in output feedback information. We give a theoretical analysis of the controlled system and illustrate the improved control performance via an example.

Dynamic Output Feedback Passivation of Nonlinear Systems with Application to Flexible Joint Robots (비선형 시스템의 동적 출력 궤환 수동화의 유연 관절 로봇에의 적용)

  • Son Young-Ik;Lim Seungchul;Kim Kab-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제10권12호
    • /
    • pp.1256-1263
    • /
    • 2004
  • Output feedback passivation problem is studied when the given system is not minimum-phase or does not have relative degree one. Using a parallel connection with an additional dynamics, the authors provide a dynamic output feedback control law which renders the composite system passive. Sufficient conditions are presented under which the composite system is output feedback passive. As an application of the dynamic passivation scheme, a point-to-point control law for a flexible joint robot is presented when only the position measurements are available. This provides an alternative way of replacing the role of the velocity measurements for the proportional-derivative (PD) feedback law. The performance of the proposed control law is illustrated in the simulation studies of a manipulator with three revolute elastic joints.

A New Robust Output Feedback Variable Structure Controller for Uncertain More Affine Nonlinear Systems with Mismatched Uncertainties and Matched Disturbance

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • 제18권2호
    • /
    • pp.206-213
    • /
    • 2014
  • In this note, a new robust nonlinear output feedback variable structure controller is first systematically and generally designed for the output control of more affine uncertain nonlinear systems with mismatched uncertainties and matched disturbance. A transformed integral output feedback sliding surface with a most simple form is applied in order to remove the reaching phase problems. The closed loop exponential stability and the existence condition of the sliding mode on the integral output feedback sliding surface is investigated with a corresponding output feedback control input in Theorem 1. For practical application the continuous implementation of the control input is made by the modified saturation function. The effectiveness of the proposed controller is verified through a design example and simulation study.