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Abstract: This paper provides a design method for a dynamic output feedback controller which stabilizes a class of linear

time invariant systems. We suppose all the states of the given system is not measurable and only the outputs are used to

stabilize the system. The systems considered cannot be stabilized by a static output feedback only. In the scheme we �rst

assume that the given system can be stabilized by a state feedback composed of its output, velocity of the output and its higher

order derivative terms. Instead of using the derivatives of the output, however, a dynamic system is constructed systematically

which replaces the role of the derivative terms. Then, a high-gain output feedback stabilizes the composite system together

with the newly constructed system. The performance of the proposed control law is illustrated in the comparative simulation

studies of a numerical example with an observer-based control law.
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1. Introduction

The design of stabilizing controllers for linear time-invariant

(LTI) systems has received considerable attention in the last

several decades [1, 2]. In this paper, we consider the stabi-

lization problem of a system represented by

_x = Ax+Bu

y = Cx

(1)

where x is the state in Rn ; u the input in Rm ; y the measur-

able output in Rp .

We suppose the system (1) cannot be stabilized by a static

output feedback only. When the measurable states are not

suÆcient to design a stabilizing control law, a dynamic out-

put feedback scheme with an additional dynamic system e.g.

state observer is designed so that the augmented closed loop

system is stable. In a recent result [3] a passivity-based dy-

namic output feedback control law has been proposed for

inherently non-passive LTI systems by using a parallel feed-

forward compensator. If a given system can be stabilized

by the PD (proportional-derivative) control law, it has been

shown that the output derivative terms in the PD law can

be replaced with the compensator which has the same di-

mension with the system's input. Hence, the systems can be

stabilized without using the �rst output derivative terms.

We remind the readers of several notions which have been

used in the passivity-based controller design methods. A sys-

tem is minimum phase if its zero dynamics (ZD) subsystem

is (asymptotically) stable [4]. The system (1) has relative

degree one if the matrix CB is nonsingular (when the sys-

tem is square). A square LTI system can be rendered strictly

passive by a static output feedback if and only if it is min-

imum phase and has relative degree one [3, 5]; this kind of

system is called almost strictly passive. More speci�cally,

if the system (1) is minimum phase and CB = I, then the

system can be transformed into the following normal form

[4]:

_� = A�a� +A�by

_y = Aya� +Ayby + u

(2)

where A�a is Hurwitz (i.e. stable). It can be easily shown

that there exists a matrix gain 	 such that the control input

u = 	y stabilizes the system (2) (or, equivalently, (1)).

We present in this paper a new controller design scheme for

broader class of systems from [3], in which the additional

dynamic system has the same dimension with the system's

input. We consider the systems which require higher order

output derivatives for a stabilizing control law rather than

the �rst order term. Hence, the results of the paper is some

extensions of the previous result [3] to the construction of a

higher order additional system which stabilizes broader class

of systems than what was considered in [3].

The only assumption in this paper is the following:

Assumption 1. Let us de�ne

�Kk :=
h
K0 K1 � � � Kk

i
and Hk :=

2
66664
C

CA

...

CA
k

3
77775 :

For the system (1), there exist an integer r (1 � r) and some

matrices K = �Kr and P of appropriate dimensions satisfying

PAr +A
T

r P < 0 (3)

where Ar = A+BKHr and P > 0.

Remark 1. It is presupposed in this assumption that r �

1. When the condition (3) holds with r = 0, the system

(1) can be stabilized by a static output feedback without

using additional dynamics. If the system (1) is stabilizable

and observable, then the condition (3) becomes easy to hold



as r increases. Hence, each r characterizes its own class of

systems.

In the next section, we present a dynamic controller for (1)

only under Assumption 1, followed by the recursive algo-

rithm to design the gains of the proposed controller in a

systematic manner. Section 3 illustrates a design example

with a simulation result. Conclusions are found in Section 4..

2. Main Results

For the system (1) that satis�es Assumption 1, we propose

a dynamic output feedback controller of the form:

_� = 	aCx+	b�

u = �aCx+�b�

(4)

where � 2 Rrp is the internal states of additional dynamics

(thus, we know their values). Then, the stabilization prob-

lem is solved if we design � = [�a;�b] and 	 = [	a;	b]

matrices so that the states x(t)! 0 and �(t)! 0 as t!1

for the following closed loop system:

_x = Ax+B�aCx+B�b�

_� = 	aCx+	b�:

(5)

In the subsequent part of the paper, we will show the design

of the matrices � and 	 by a recursive algorithm. Therefore,

the main contribution of the paper is summarized as

Theorem 2. For the system (1) satisfying Assumption 1,

there exists a dynamic output feedback stabilizing controller

(4) with additional �-dynamics of order (r � p).

The idea of the construction of (4) is to assume, in the be-

ginning, that Hrx is available for measurement on the basis

of Assumption 1. As the �rst step of the construction, we

change our virtual assumption so that Hr�1x is available for

measurement but CAr
x is not. Thus, the designed control

law whenHrx is all measurable is not implementable because

it depends on the signal CAr
x. We extract the signal CAr

x

from the control law and design additional dynamics with

which the use of CAr
x is eliminated. In the next step, we

proceed by assuming that Hr�2x is measurable but CAr�1
x

is not. The recursion goes to the end if we get a dynamic

controller that requires only the measurement of H0x = Cx

but not others.

The recursion begins by the following initial step.

2.1. Initial Step

When the Hrx is measurable, under Assumption 1, the

closed loop system Sr with the following control law is stable:

Sr :

8><
>:

u = KHrx = �Kr�1Hr�1x+Kr(CA
r
x)

_x = Arx = (A+BKHr)x

= Ax+B �Kr�1Hr�1x+BKr(CA
r
x)

(6)

where K is given in Assumption 1.

As the initial step for designing the �-dynamics in (4) we

assume that Hr�1x is available for measurement but CAr
x

is not. Then, by introducing v, we decompose the system Sr

into the term including CAk
x and the rest (as follows):

u = �Kr�1Hr�1x+Krv (7a)

_x = Ax+B �Kr�1Hr�1x+BKrv: (7b)

If the following dynamic system is appended to (7b)

_� = �CA
r�1

B �Kr�1Hr�1x� (I + CA
r�1

BKr)v (8a)

�y = CA
r�1

x+ �; (8b)

then the augmented system (7b){(8a) is stabilized by v =

	r�y where 	r is chosen so that

Ar�1 :=

"
Ar �ArBKr

CA
r

�CA
r
BKr �	r

#
is Hurwitz: (9)

Proof of Initial Step.

First of all, note that

_�y = CA
r�1

_x+ _�

= CA
r�1

(Ax+B �Kr�1Hr�1x+BKrv)

� (CA
r�1

B �Kr�1Hr�1x+ CA
r�1

BKrv + v)

= CA
r
x� v:

We now de�ne

� = x+BKr�y (10)

and change coordinates [xT �
T ]T into [�T �yT ]T . Then

_� = Ar� �ArBKr�y

_�y = CA
r
� � CA

r
BKr�y � v:

(11)

Since the matrix Ar is Hurwitz, the system (11) can be stabi-

lized by v = 	r�y with an appropriate gain 	r. For example,

	r =  rI with suÆciently large  r > 0.

Consequently, we obtain the closed loop system Sr�1 as fol-

lows:

Sr�1 :

8>>>>>>><
>>>>>>>:

u = �Kr�1Hr�1x+Kr	r(CA
r�1

x+ �)

=
�
�Kr�1 + [0 Kr	r]

�
Hr�1x+Kr	r�

_x = Ax+B
�
�Kr�1 + [0 Kr	r]

�
Hr�1x

+ BKr	r�

_� = �

�
CA

r�1
B �Kr�1 + [ 0 D� ]

�
Hr�1x

� D��

(12)

where D� = (I + CA
r�1

BKr)	r. The above system (12) is

stable because its systemmatrix is similar to Ar�1 of (9).

2.2. Recursive Design

Suppose that a system Sk (k is an index between 0 and r

and the recursion begins when k = r and ends with k = 0)

given by

Sk :

8>>>>>>><
>>>>>>>:

u = KaHkx+Kb�

= Ka1Hk�1x+Kb�+Ka2(CA
k
x)

_x = Ax+BKaHkx+BKb�

= Ax+D1aHk�1x+D12�+D1b(CA
k
x)

_� = D21Hkx+D22�

= D2aHk�1x+D22�+D2b(CA
k
x)

(13)

where � 2 R
p(r�k); BKa = [D1a D1b] and BKb = D12.

The matrices A and Hk (from A and C) are given in (1),

and all D matrices have appropriate dimensions. Note that

� is null when k = r (i.e. Sr), but increases its dimension as

the recursion proceeds.



Let z = [xT �
T ]T . If v is taken as

v = CA
k
x; (14)

the system Sk will be concisely denoted by

_z = Akz = Fz +Dbv (15)

where

Ak =

"
A+BKaHk BKb

D21Hk D22

#
;

F =

"
A+D1aHk�1 D12

D2aHk�1 D22

#
and Db =

"
D1b

D2b

#
. Note that

Ak = F +Db[CA
k 0].

Since CAk
x is not available for measurement (when k � 1),

we now assume that Hk�1x is available for measurement but

CA
k
x is not. Then, the following theorem shows that, by

attaching additional dynamics, we can design an alternative

v that does not depend on the unmeasurable quantity CAk
x.

Theorem 3. Suppose that the system (15) is stable when

v is taken as (14), i.e. the matrix Ak is Hurwitz. If the

following dynamic system is appended to (15)

_� = �CA
k�1

D1aHk�1x� CA
k�1

D12�

� (I + CA
k�1

D1b)v (16a)

�y = CA
k�1

x+ �; (16b)

then the augmented system (15){(16) is stabilized by re-

designing

v = 	k�y; (17)

in which �y is measurable if Hk�1x is assumed to be measur-

able. The matrix gain 	k is chosen so that

Ak�1 :=

"
Ak �AkDbh

CA
k 0

i
�CA

k
D1b �	k

#
(18)

is Hurwitz.

Remark 4. Under Assumption 1 (and from the initial step)

the system Sk is stable when k = r (and k = r� 1). For the

rest of the cases the stability will be justi�ed as the recursion

proceeds. Note that the matrix (18) always can be Hurwitz

e.g. when 	k =  kI with suÆciently large  k > 0.

Proof of Theorem 3

From (13){(14){(16){(17) the proposed control law is given

by

u = Ka1Hk�1x+Kb�+Ka2	k(CA
k�1

x+ �): (19)

Hence, the closed-loop system (15){(16){(19) can be written

as a single system (20) in the next page.

As in the proof of Initial Step, we change coordinates with

the following transformation matrix T :0
B@�1�2

�y

1
CA = T

0
B@x�
�

1
CA =

2
64I +D1bCA

k�1 0 D1b

D2bCA
k�1

I D2b

CA
k�1 0 I

3
75
0
B@x�
�

1
CA: (21)

Then we obtain

_� = F� +DbCA
k
�1 � (FDb +DbCA

k
D1b)�y

= Ak� �AkDb�y

_�y = [CA
k
0]� � CA

k
D1b�y � v:

(22)

Since the matrix Ak is Hurwitz, there exists v = 	k�y that

stabilizes the system (22). With this 	k the matrix Ak�1 of

(18) is Hurwitz. For the system (20), it follows that

2
64 _x_�
_�

3
75 = ~Ak�1

2
64x�
�

3
75

where ~Ak�1 = T
�1
Ak�1T . Therefore, the stability of (20)

has been proved.

Finally the recursion procedure is quite obvious. By the ini-

tial step, the system Sr�1 is stable and the proof of Theorem

3 presents the system Sr�2 by the equation (20). Indeed the

new Dij matrices are identi�ed by rede�ning [�T ; �T ]T as

the new � and by extracting CAr�2
x term. Then the sys-

tem Sr�2 is also stable, which enables to apply the recursion

to the system Sr�2 and the system Sr�3 is obtained. This

recursion will end with S1, because Theorem 3 will yield an

implementable control system (i.e., the system S0). As a re-

sult, the system (20) will be the same as (5), and all matrices

� and 	 are derived straightforwardly.

3. Design Example

We illustrate the proposed design method with a simple nu-

merical example:

_x =

2
640 a 0

0 0 1

0 0 0

3
75x+

2
6400
1

3
75u

y =
h
1 0 0

i
x

(23)

where the constant a represents an uncertainty and is as-

sumed to be 1 in the design procedure.

The system (23) satis�es Assumption 1 with r = 2. In fact,

with the following control law

u = KH2x =
h
�50 �40 �11

i
H2x; (24)

the eigenvalues of the matrix A2 = A+BKH2 are given by

f�5;�3 � j g. Hence, the closed loop system (23){(24) is

stable and we obtain �K1 =
h
�50 �40

i
and K2 = �11. In

order to replace the CA2
x-term in H2x, at the initial step,

the matrix A1 in (9) is considered for (23). The matrix is

obtained by

A1 =

2
6664

0 1 0 0

0 0 1 11

�50 �40 �11 �121

0 0 1 �19

3
7775

when the gain 	2 = 30. Indeed the eigenvalues of A1 have

been chosen by f�12:83 � j9:38;�2:17� j1:10g.



2
64 _x_�
_�

3
75 =

2
64 A+D1aHk�1 +D1b	k � CA

k�1
D12 D1b	k

D2aHk�1 +D2b	k � CA
k�1

D22 D2b	k

�CA
k�1

D1aHk�1 � (I + CA
k�1

D1b)	kCA
k�1

�CA
k�1

D12 �(I + CA
k�1

D1b)	k

3
75
2
64x�
�

3
75 : (20)

However, since the CAx-term in H1x is neither measurable,

we proceed one step further by Theorem 3. From the previ-

ous step, the parameters of (13) is given by

Ka = [�50 � 370]; Kb = �330 ;

D1a = [0 0 � 50]T ; D1b = [0 0 � 370]T ;

D12 = [0 0 � 330]T ; D22 = �30:

(25)

With these parameters the gain 	1 is chosen such that the

matrix A0 in (18) is Hurwitz. When 	1 = 30 the eigenvalues

of the matrix is given by f�45:12;�5:22 � j12:21;�2:22 �

j0:85g.

Finally, with the following additional dynamics:(
_� = �900y � 30�� 900�

_� = �30y � 30�;
(26)

the stabilizing control law (19) for (23) is obtained by

u = �11150y � 330�� 11100�: (27)

Comparative simulation studies are performed with the pro-

posed control law and the control law using a state observer

[2]. Though the additonal dynamics (26) and the state ob-

server are constructed when a = 1 in (23), in order to test

the robust property of the proposed control law against pa-

rameter uncertainties, the simulations are carried out when

a = 2 and a = 3. When a = 2 both control laws stabilize

the system. Figure 1 shows the simulation results when the

maximum amplitude of the control laws are constrained to

50. That is, we have placed the saturation operator at the

output of both controllers. On the other hand, if the param-

eter a = 3, unlike the case when a = 2 the closed loop system

with the observer-based control is unstable (even without the

control saturation), and the system states diverge while the

proposed control still stabilizes the system. The simulation

results are given in Fig. 1, which shows the robust property

of the proposed control law. In the �gure we can see that

the system states by the observer-based control are bounded

since the control value is saturated. All the initial conditions

of the system are set to 1 while all the initial states of the

additional dynamics and the observer are set to 0.

4. Conclusion

In this paper, we present a new recursive algorithm to de-

sign a dynamic output feedback control law which stabilizes

linear time-invariant systems. By Assumption 1, the class of

systems that admits the dynamic output feedback controller

is much broader than that of [3], and the index r charac-

terizes the class. The recursive design indicates the higher

order dynamics is necessary when the index r increases. By

some computer simulations the proposed control law may

have some advantages to the observer-based control when

the given systems have some parameter uncertainties. From

the proposed recursion algorithm, it seems easy to develop

an automated design package on a PC.
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Fig. 1. Simulation Results (proposed: solid).
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Fig. 2. Simulation Results II (proposed: solid).
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