• Title/Summary/Keyword: Output feedback controller

Search Result 535, Processing Time 0.026 seconds

Design of Regulation Controller for Electromagnetic Suspension System Using Neural Network (NN을 이용한 자기부상 시스템에서의 레귤레이션 제어기 설계)

  • Jang, S.M.;Sung, S.Y.;Sung, S.K.;Jo, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1408-1410
    • /
    • 2000
  • The regulation performances needs high control gain in novel output feedback controller but high control gain is decreased relative stability of the total system. Thus, this paper proposed neural network controller(NNC) for output feedback controller. In this scheme, output feedback controller are guarantee global stability and NNC are controller steady-state error and defined optimal control law. And we demonstrated this scheme by simulations.

  • PDF

Output Feedback Dynamic Surface Control of Flexible-Joint Robots

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.223-233
    • /
    • 2008
  • A new output feedback controller design approach for flexible-joint (FJ) robots via the observer dynamic surface design technique is presented. The proposed approach only requires the feedback of position states. We first design an observer to estimate the link and actuator velocity information. Then, the link position tracking controller using the observer dynamic surface design procedure is developed. Therefore, the proposed controller can be simpler than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop system are uniformly ultimately bounded. Finally, the simulation results of a three-link FJ robot are presented to validate the good position tracking performance of the proposed control system.

Mixed $H_2$/$H_{\infty}$ Output Feedback Controller Design for Time-Delayed System (시간지연 시스템에 대한 혼합 $H_2$/$H_{\infty}$ 출력궤환 제어기 설계)

  • 양혜진;김종해;조용철;박흥배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.331-331
    • /
    • 2000
  • This paper presents the mixed $H_2/H_{\infty}$ output feedback controIler design method for linear systems with delayed state. The objective is to design the output feedback controller which minimizes the H$_2$-norm of one transfer function while ensuring the H$_{\infty}$-norm of the other is held below a chosen level. When objective is tormulated in terms of a common Lyapunov function, the sufficient conditions of existence of mixed $H_2/H_{\infty}$ controller are given in terms of LMIs. terms of LMIs.

  • PDF

Robust output feedback control of LTI system using estimated output derivatives (출력 미분값의 추정에 의한 선형 시불변 시스템의 로버스트 출력 궤환 제어)

  • Lee, Gun-Bok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.273-282
    • /
    • 1996
  • This work is conceded with the estimation of output derivatives and their use for the design of robust controller for linear systems with system uncertainties due to modeling errors and disturbances. It is assumed that a nominal transfer function model and quantitative bounds for system uncertainties and known. The developed control schemes are shown to achieve regulation of the system output and ensures boundedness of the system states without imposing any structural conditions on system uncertainties and disturbances. Output derivative estimation is first conducted through restructuring of the plant in a specific parameterization. They are utilized for constructing robust nonlinear high-gain feedback controller of a SMC(Sliding Mode Control)type. The performances of the developed controller are evaluated and shown to be effective and useful through simulation study.

  • PDF

Structural System Parameter Estimation using Strain Output Feedback (스트레인 출력 되먹임을 이용한 구조 시스템 계수 추정)

  • Ha, Jae-Hoon;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.124-127
    • /
    • 2005
  • As computer capability and test skill become more and more advanced, finite element method and modal test are being widely applied in engineering design. In order to correlate and reconcile the inevitable discrepancies between the analytical and experimental models, many techniques have been developed. Among these methods, multiple-system methods are known as the effective tools in that they can supply the rich modal data available which are experimentally obtained. These abundant modal data can help structural system parameters estimated well. Multiple-system methods can be classified into the structural modification methods and feedback controller methods. The structural modification methods need the physical attachment of structures and their concept may limit the application of them. To overcome this drawback, the feedback controller methods are addressed which enable us to get more modal data without the structural change. Mode decoupling controller(MDC), one of them, is to use acceleration out)ut feedback to perturb an open-loop system. The output feedback controller generally cannot guarantee the stability of a closed-loop system. However, MDC can solve this problem under the certain constraints. So far, MDC utilizes accelerations as the sensor signals. In this research, strain sensors are going to be picked up to apply to the MDC. Strain output is recently used for structural system identification due to the drastically improved and miniaturized strain sensor. In this paper, we show that the MDC using strain output has differences compared with acceleration output in estimating the structural system parameters. The associated simulation is performed to demonstrate the above mentioned characteristics.

  • PDF

Design Method of a Parallel Feedforward Compensator for Passivation of Linear Systems (선형 시스템 수동화를 위한 병렬 앞먹임 보상기 설계방법 연구)

  • 손영익
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.590-596
    • /
    • 2004
  • A passivity-based dynamic output feedback controller design is considered for a finite collection of non-square linear systems. Design of a single controller for a set of plants i.e. simultaneous stabilization is an important issue in the area of robust control design. We first determine a squaring gain matrix and an additional dynamics that is connected to the systems in a feedforward way, then a static passivating control law is designed. Consequently, the actual feedback controller will be the static control law combined with the feedforward dynamics. A necessary and sufficient condition for the existence of the parallel feedforward compensator is given by the static output feedback formulation. In contrast to the previous result [1], a technical condition for constructing the parallel feedforward compensator is removed by proposing a new type of the parallel compensator.

An output feedback control design for linear systems with state delay via convex optimization (컨벡스 최적화를 이용한 상태변수에 시간지연을 가진 선형시스템의 출력궤환 $H^{\infty}$ 제어기 설계)

  • 유석환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.86-92
    • /
    • 1998
  • This paper deals with an output feedback H control problem for linear time ivariant systems with state delay. The proposed output feedback controller is represented by the lower linear fractional transformation of alinear time invariant system and a delay operator. Sufficient conditions for the existence of the output feedback controller are given in the form of linear matrix inequalities which are less conservative than those for the existence of a rational output feedback controler. We also present a numerical example to demonstrate the efficacy of the proposed method.of the proposed method.

  • PDF

Robust and Non-fragile $H^{\infty}$ Output Feedback Controller Design for Parameter Uncertain Systems with Time Delay (시간지연을 가지는 파라미터 불확실성 시스템에 대한 견실 비약성 $H^{\infty}$출력궤환 제어기 설계)

  • 손준혁;조상현;김기태;박홍배
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.17-20
    • /
    • 2002
  • This paper describes the synthesis of robust and non-fragile Η$^{\infty}$ output feedback controller for parameter uncertain systems with time delay. The sufficient condition of controller existence, and the design method of robust and non-fragile Η$^{\infty}$ output feedback controller are presented. The obtained conditions can be represented as parameterized LMIs, and PLMIs feasibility problems involve infinitely many LMIs hence are very hard to solve. Therefore, PLMIs are replaced by a finite set of LMIs using relaxation techniques(separated convexity concepts). This method is potentially conservative but often provide practically exploitable solutions of difficult problems with a reasonable computational effort. The compatibility of resulting controller is illustrated by numerical example.

  • PDF

Output-feedback H_infinite Control of Discrete-time LPV Systems

  • Park, Doo-Jin;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.44.2-44
    • /
    • 2002
  • $\textbullet$ We propose a new H_infinite LPV output-feedback controller associated with a new PQLF $\textbullet$ The LPV controller employs not only the current-time but also the one-step-past information $\textbullet$ The controller is formulated with parameterized linear matrix inequalities $\textbullet$ We propose the new controller for discrete-time LPV systems $\textbullet$ As a conservative case, we suggest another controller associated with CQLF

  • PDF

Nonlinear Controller and Observer Design for Ball and Beam (볼빔에 대한 비선형 제어기 및 관측기 설계)

  • 임규만
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.125-128
    • /
    • 2001
  • In this paper, We proposed the nonlinear controller and observer design for a ball and beam system. Unfortunately, for the ball and beam system, the control coefficient is zero whenever the angular velocity or ball position are zero. Therefore, the relative degree of the ball and beam system is not well defined. The presented the nonlinear controller and observer design is based on the approximation input-output feedback linearization. And we verified that the proposed nonlinear controller and observer scheme is the feasible through a computer simulation.

  • PDF