• Title/Summary/Keyword: Out-pile Test

Search Result 279, Processing Time 0.022 seconds

Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

  • Jang, Ki-Nam;Cha, Hyun-Jin;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1740-1747
    • /
    • 2017
  • To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of $250^{\circ}C$, $300^{\circ}C$, $350^{\circ}C$, and $400^{\circ}C$, and then cooled to room temperature at cooling rates of $0.3^{\circ}C/min$ under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < $250^{\circ}C$, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

Iodine Stress Corrosion Cracking of Zircaloy-4 Tubes

  • Moon, Kyung-Jin;Lee, Byung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.65-72
    • /
    • 1978
  • In this paper, it is attempted to investigate the phenomena of iodine stress corrosion cracking of Zircaloy-4 cladding failures in reactor through the results of similar out-of-pile test in iodine vapour. The main result of this experiment is a finding of the relation between the threshold stress which can lead to iodine stress corrosion cracking of Zircaloy-4 tube and the iodine concentration. The values of critical stress and the critical iodine concentration are also obtained. A model which relates failure time of Zircaley-4 tube to failure stress and iodine concentration is suggested as follows: log t$_{F}$ =5.5-(3/2)log$_{c}$-4log $\sigma$ where t$_{F}$ : failure time, minutes c: iodne concentration, mg/㎤ $\sigma$: stress, 10$^4$psi.

  • PDF

Development of Design Method of Disconnected Piled Raft Foundation System (기초분리말뚝 공법의 설계기법 개발)

  • Choi, Jung-In;Min, Ki-Hoon;Kim, Sung-Ho;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.691-699
    • /
    • 2008
  • In the design of a foundation, settlement of the foundation may exceed allowable design criteria even with a competent bearing stratum. In such a case, a piled-raft foundation system may be adopted using piles as settlement reducing component. In this paper, Disconnected Piled Raft Foundation (DPRF) system, which installs disconnected piles underneath the raft and uses the piles as ground reinforcements, is studied as a cost effective design method against the classical piled-raft foundation system. To this end, large size loading tests were carried out on weathered ground changing area replacement ratio and length of piles. The results indicated that the settlement of the reinforced ground was reduced by 34~87% and the allowable bearing pressure increased by 70% on average from those of the unreinforced original ground, respectively. The correlating formula between the area replacement ratio and the load bearing ratio of piles were derived from the test results and numerical analysis. From the correlation, a design method determining the size and the quantity of the disconnected piles to enhance the bearing capacity of original ground to the desired value was proposed based on one inch settlement criteria.

  • PDF

Effects of sizes and mechanical properties of fuel coupon on the rolling simulation results of monolithic fuel plate blanks

  • Kong, Xiangzhe;Ding, Shurong;Yang, Hongyan;Peng, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1330-1338
    • /
    • 2018
  • High-density UMo/Zr monolithic nuclear fuel plates have a promising application prospect in high flux research and test reactors. The solid state welding method called co-rolling is used for their fabrication. Hot co-rolling simulations for the composite blanks of UMo/Zr monolithic nuclear fuel plates are performed. The effects of coupon sizes and mechanical property parameters on the contact pressures between the to-be-bonded surfaces are investigated and analyzed. The numerical simulation results indicate that 1) the maximum contact pressures between the fuel coupon and the Zircaloy cover exist near the central line along the plate length direction; as a whole the contact pressures decrease toward the edges in the plate width direction; and lower contact pressures appear at a large zone near the coupon corner, where de-bonding is easy to take place in the in-pile irradiation environments; 2) the maximum contact pressures between the fuel coupon and the Zircaloy parts increase with the initial coupon thickness; after reaching a certain thickness value, the contact pressures hardly change, which was mainly induced by the complex deformation mechanism and special mechanical constitutive relation of fuel coupon; 3) softer fuel coupon will result in lower contact pressures and form interfaces being more out-of-flatness.

Behavior Characteristics of Micropile Following the Embedded Condition (근입조건에 따른 마이크로파일의 거동특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.6
    • /
    • pp.19-25
    • /
    • 2020
  • In the recent downtown works, there are frequent cases where the work on existing piles is impossible due to the influence from lack of space and surrounding environment. In such cases, there has been growing cases of using the micropile method that is available to work with the small equipment and asserts the bearing capacity of the existing piles. The micropile method is a type of drilled shaft with the diameter of a pile to be around 75 mm~300 mm that, even for a case where it has certain surrounding structure, foundation and spatial obstacle, there is almost no work difficulty and the work is feasible under all types of soil conditions. In addition, the work can be done in places where the ceiling of the building is low with less vibration and noise in the work process that such method is significantly used for foundation reinforcement of existing buildings. With respect to the motion characteristics that are changed depending on the foundational characteristics or when the micropile is applied with compression or tensile force, there is very few studies conducted. Therefore, under this study, through the data analysis of the field loading test regarding the micropile worked in the fields, it clarifies the settlement and characteristics of bearing capacity following the embedded condition of the ingredients and piles that consist the foundation if the compression and tensile force are applied to the micropile, and by facilitating the statistical analysis program, SAS, to carry out the analysis on the main elements influencing on settlement of the micropile and bearing capacity.

An Experimental Study on the Load-settlement Behavior and Settlement-reducing Effect of the Disconnected Piled Raft Foundation (말뚝보강기초의 하중-침하량 거동 및 침하감소효과에 대한 실험적 연구)

  • Lee Yeong-Saeng;Hong Seung-Hyeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.95-104
    • /
    • 2006
  • For the interests in the economical and safe design of foundation system, the concern on the piled raft or disconnected piled raft foundation system is increasing now. In this study, the behavior and the effects of the disconnected piled raft foundation not studied actively in this country were examined using the triaxial compression tests in place of laboratory model tests. The triaxial test samples were prepared with Jumunjin standard sand and the carbon rods, which simulate the ground soil and piles respectively. After the sample in which carbon rods were arranged was laid inside the triaxial chamber, the confining pressure was applied and then loading test was conducted. To analyze the reinforcing effects of the disconnected piled raft foundation, a few number of tests were carried out by changing the number, the diameter and the length of the model piles. As a result of this study, in the disconnected piled raft foundation system, even though the number of pile is few and the diameter of pile is small, the settlement of the foundation system decreased greatly.

A Study on the Behavior Characteristics of Soft Clay Ground by C.G.S Method (C.G.S공법을 적용한 연약점토지반에서의 거동특성에 관한 연구)

  • 천병식;여유현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.307-323
    • /
    • 2003
  • In this study the pilot test of C.G.S (Compaction Grouting System) as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method to the soft ground and the effect of settlement restraint. The site for pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occurs continuously because this ground is very soft. Site investigations such as SPT, CPT and vane shear test were performed to determine the characteristics of ground improvement after the installation of C.G.S. Field measurements were performed on purpose to find out the displacement of ground during the installation of C.G.S. From the results of this study, C.G.S method can be optimized by the control of radius, space, depth, injection material and injection pressure. C.G.S improves soft ground with radial consolidation of adjacent soft ground. Considering that increase of N value to about 3, C.G.S can be considered as an effective method to increase the bearing capacity as well as constrain the settlement of soft ground. It is also expected to be economic and effective in the improvement of ground when it is used in applicable sites.

Assessment of the severe accident code MIDAC based on FROMA, QUENCH-06&16 experiments

  • Wu, Shihao;Zhang, Yapei;Wang, Dong;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.579-588
    • /
    • 2022
  • In order to meet the needs of domestic reactor severe accident analysis program, a MIDAC (Module Invessel Degraded severe accident Analysis Code) is developed and maintained by Xi'an Jiaotong University. As the accuracy of the calculation results of the analysis program is of great significance for the formulation of severe accident mitigation measures, the article select three experiments to evaluate the updated severe accident models of MIDAC. Among them, QUENCH-06 is the international standard No.45, QUENCH-16 is a test for the analysis of air oxidation, and FROMA is an out-of-pile fuel rod melting experiment recently carried out by Xi'an Jiaotong University. The heating and melting model with lumped parameter method and the steam oxidation model with Cathcart-Pawel and Volchek-Zvonarev correlations combination in MIDAC could better meet the needs of severe accident analysis. Although the influence of nitrogen still need to be further improved, the air oxidation model with NUREG still has the ability to provide guiding significance for engineering practice.

Characteristics of Bearing Capacity and Stress Concentration of Clay Ground Improved with Sand Compaction Piles (SCP 보강 점성토 지반의 지지력 및 응력분담특성)

  • Yoo Nam-Jae;Park Byung-Soo;Jeong Gil-Soo;Koh Kyung-Hwan;Kim Ji-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.81-91
    • /
    • 2005
  • This paper is the results of experimental and numerical works on the investigating design factors influencing the bearing capacity, the ratio of stress concentration, and the failure mechanism of the clay ground improved with sand compaction piles (SCP). In order to find the behavior of the clay ground improved with SCP, extensive centrifuge model experiments were carried out for each of the SCP replacement ratio of 20, 40, and $70\%$, the non-plastic fine contents in sand of 5, 10, and $15\%$, and the ratio of the improved width to the loaded area (W/B) of 1, 2, and 3. The commertially available software of FEM, CRISP, was used to analyze test results by performing numerical estimations. In these numerical analyses the sand compaction piles and the clay ground were simulated as a linear elastic and plastic constitutive model and the modified Cam-clay model, based on Critical State Soil Mechanics, respectively.

An Experimental Study on the Stabilizing Effect of Piles against Sliding (사면에 설치된 억지말뚝의 활동억지효과에 대한 실험적 연구)

  • Hong Won-Pyo;Song Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.69-80
    • /
    • 2005
  • In order to investigate the stabilizing effect of piles against sliding, a series of model tests were carried out. The model apparatus was designed to perform the model test of slope reinforced by stabilizing piles. The instrumentation system was used to measure the deflection of stabilizing piles during slope failure. The stabilizing effect of the piles in a row with some interval ratio is larger than the isolated pile without interval ratio. Because the prevention force of piles in a row increased due to the soil arching effect between piles during slope failure. Especially, the maximum value of prevention ratio was presented at 0.5 of interval ratio. If the required prevention ratio is 1.1, the interval ratio must be installed from 0.5 to 0.8. Also, the stabilizing effect of piles against sliding is excellent at the interval ratio between 0.5 and 0.8. This value can be proposed as the criterion of the interval ratio between piles against slope failure.