• Title/Summary/Keyword: Out-of-Plane Motion

Search Result 165, Processing Time 0.024 seconds

An Analysis of the Stability of Externally Pressurized Air-Lubricated Journal Bearings (외부가압 공기윤활 저어널베어링의 안정성에 관한 해석)

  • 임종락;김경웅;김금모
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.74-81
    • /
    • 1990
  • The threshold of instability for a rigid rotor supported in externally pressurized airlubricated circular or non-circular journal bearings of finite length is theoretically analyzed. The analysis is performed for a bearing having one feeding plane, no recess volume, which is assumed to be a line source, and is based on a first order perturbation of journal center motion about steady state position. And then linearized system dynamic analysis is carried out. Numerical results are given, showing the threshold of instability as a function of supply pressure ratio, feeding parameter and load. It is shown that the region that 2-lobe bearing is more stable than circular bearing exists and whirl ratio of 2-lobe bearing is less than that of the other types of bearing.

The Dynamic Post-Buckling Analysis of the Non-Conservative System including Damping Effects (감쇠효과(減衰效果)를 고려한 비보존력계(非保存力系)의 동적(動的) 후좌굴(後挫屈) 해석(解析))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.67-75
    • /
    • 1990
  • A geometrically nonlinear analysis procedure including the damping effects is presented for the investigation of the dynamic post-divergence and post-flutter behavior of a non-conservative system. The dynamic nonlinear analysis of plane frame structure subjected to conservative and non-conservative forces is carried out by solving the equations of motion using Newmark method. Numerical results are presented to demonstrate the effects of the internal and external damping forces in the conservative and non-conservative systems.

  • PDF

An Experimental Study on Chaotic Vibrations of a Thin Beam under Torsional Excitation (지지부에 비틀림 하중을 받는 얇은 빔의 혼돈역학에 관한 실험적 연구)

  • 권태호;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.191-196
    • /
    • 1995
  • 지지부에 비틀림 하중을 받는 Elstica는 비틀림 운동을 하며, 그 가진 주파수가 굽힘모드 근처일 때는 해당하는 굽힘 모드의 운동까지도 동시에 존재하게 된다. 이때 가진력의 크기가 작을때는 주기적인 운동이 된다. 가진력의 크기가 증가함에 따라 굽힘 운동은 굽힘 1차 모드와 연성된 유사주기운동이 발생하며, 이떤 범위 이상이 되면 굽힘 운동과 비틀림 운동이 결합된 진폭이 매우 크고 불규칙적인 비평면 운동(out of plane motion)이 발생하게 되며 이 때의 운동은 혼돈운동이다. Elastica가 굽힘 3차 고유진동수 근방의 주파수로 비틀림 하중을 받을 때의 정확한 이론적 해석을 위해서는 굽힘 3차모드 까지는 반영할 수 있는 식이 모델링 되어야 할 것으로 보인다. 이것은 복잡한 비평면운동을 할 때 굽힘 3차 모드까지 관찰된다는 사실에 근거한다.

  • PDF

Optimization of the Flapping Motion for the High Maneuverability Flight (기동성 비행을 위한 날갯짓 경로의 최적화)

  • Choi, Jung-Sun;Kim, Jae-Woong;Lee, Do-Hyung;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.653-663
    • /
    • 2012
  • The study considers the high maneuverability flight and path optimization is conducted to investigate the appropriate generation of the lift and thrust considering the angle of the stroke plane. The path optimization problem is defined according to the various purposes of the high maneuverability flight. The flying purposes are to maximize thrust force, lift force and both lift and thrust forces. The flapping motion of the airfoil is made by a combined sinusoidal plunging and pitching motion in each problem. The optimization process is carried out by using well-defined surrogate models. The surrogate model is determined by the results of two-dimensional computational fluid dynamics analysis. The Kriging method is used to make the surrogate model and a genetic algorithm is utilized to optimize the surrogate model. The optimization results show the flapping motions for the high maneuverable flight. The effects on the generation of lift and thrust forces are confirmed by analyzing the vortex.

Development of float off Operation Design for Mdlti Semi-submersible Barges with Symmetrical Stability Casings (반 잠수식 복수부선의 진수설계)

  • 양영태;최문길;이춘보;박병남;성석부
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.72-76
    • /
    • 2003
  • This paper presents the design concept and operation results of float-off for FSO (340,000 DWT Class, ELF AMENAM KPONO Project) built on the ground, without dry dock facilities. It was the first attempt to build FSO, completely, on the ground and launch it using DBU (Double Barge Unit, which was connected by rigid frame structure.) The major characteristics of FSO, which are similar to general VLCC type hull, including topside structure, weigh 51,000 metric ton. In order to have sufficient stability during the deck immersion of DBU, while passing through a minimum water plane area zone, proper trim control was completed with LMC (Load Master Computer). The major features of the monitoring system include calculation for transverse bending moment, shear force, local strength check of each connector, based on component stress, and deformation check during the load-out and float-off. Another major concern during the operation was to avoid damages at the bottom and sides of FSO, due to motion & movement after free-floating; therefore, adequate clearances between DBU and FSO were to be provided, and guide posts were installed to prevent side damage of the DBU casings. This paper also presents various measures that indecate the connector bending moment, damage stability analysis, and mooring of DBU during float off.

Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method (스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석)

  • Lee, Yung-Koo;Hong, Suk-Yoon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.

Prediction of Radiated Noise From a Shaft-bearing-plate System Due to an Axial Excitation of Helical Gears (헬리컬 기어의 축방향 가진에 의한 축-베어링-플레이트계의 방사소음 예측)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, a simplified model is studied to predict analytically the radiated noise from the helical gear system due to an axial excitation of helical gear. The simplified model describes gear, shaft, bearing, and housing. To obtain the axial force of helical gear, mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer function from the shaft to the clamped plate are used, using a spectral method with four pole parameters. Out-of-plane displacement for the thin circular plate with viscous damping is derived and sound pressure radiated from the plate is also derived. Using the model, parameter studies are carried out.

  • PDF

Full-mouth rehabilitation of severely attrited dentition with missing posterior teeth: a case report using digital workflow with jaw motion tracking (심한 교모와 구치부 상실을 보이는 환자의 전악 수복: Jaw motion tracking과 digital workflow를 활용한 증례 보고)

  • Chan Young Park;Younghoo Lee;Seoung-Jin Hong;Janghyun Paek;Kwantae Noh;Ahran Pae;Hyeong-Seob Kim;Kung-Rock Kwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.4
    • /
    • pp.293-307
    • /
    • 2023
  • Jaw motion tracking, which is introduced in recent case reports, is a method which records the patient's individualized pathway of the mandibular movements along with facebow transfer, and reproduces the information in the virtual space of computer-aided-design/computer-aided-manufacturing (CAD-CAM) software. In this present case, a collapse of the occlusal plane was observed, due the loss of posterior teeth for a long period. Full-mouth rehabilitation with an increase in the occlusal vertical dimension was planned. First, the patient's mandibular movements were recorded on the newly established jaw relation by jaw tracking, and this information was assembled with the patient's intraoral data to create a virtual patient. Implant planning and diagnostic wax-up was done on the virtual patient, leading the fabrication of the provisional prosthesis. On the newly established jaw relation with an increase in the occlusal vertical dimension, canine guidance of the provisional prosthesis was checked. Finally, the provisional prosthesis was carried out to the definitive prosthesis. Using the advantages of the technologies in the digital dentistry, the patient was satisfied with the function and the esthetics after the treatment.

Practical seismic assessment of unreinforced masonry historical buildings

  • Pardalopoulos, Stylianos I.;Pantazopoulou, Stavroula J.;Ignatakis, Christos E.
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.195-215
    • /
    • 2016
  • Rehabilitation of historical unreinforced masonry (URM) buildings is a priority in many parts of the world, since those buildings are a living part of history and a testament of human achievement of the era of their construction. Many of these buildings are still operational; comprising brittle materials with no reinforcements, with spatially distributed mass and stiffness, they are not encompassed by current seismic assessment procedures that have been developed for other structural types. To facilitate the difficult task of selecting a proper rehabilitation strategy - often restricted by international treaties for non-invasiveness and reversibility of the intervention - and given the practical requirements for the buildings' intended reuse, this paper presents a practical procedure for assessment of seismic demands of URM buildings - mainly historical constructions that lack a well-defined diaphragm action. A key ingredient of the method is approximation of the spatial shape of lateral translation, ${\Phi}$, that the building assumes when subjected to a uniform field of lateral acceleration. Using ${\Phi}$ as a 3-D shape function, the dynamic response of the system is evaluated, using the concepts of SDOF approximation of continuous systems. This enables determination of the envelope of the developed deformations and the tendency for deformation and damage localization throughout the examined building for a given design earthquake scenario. Deformation demands are specified in terms of relative drift ratios referring to the in-plane and the out-of-plane seismic response of the building's structural elements. Drift ratio demands are compared with drift capacities associated with predefined performance limits. The accuracy of the introduced procedure is evaluated through (a) comparison of the response profiles with those obtained from detailed time-history dynamic analysis using a suite of ten strong ground motion records, five of which with near-field characteristics, and (b) evaluation of the performance assessment results with observations reported in reconnaissance reports of the field performance of two neoclassical torsionally-sensitive historical buildings, located in Thessaloniki, Greece, which survived a major earthquake in the past.

Cancellation of Motion Artifact in MRI (MRI에 있어서 체동 아티팩트의 제거)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.70-78
    • /
    • 2000
  • In this study, a new method for canceling MRI artifacts through the motion translation of image plane is presented Breathing often makes problems in a clinical diagnosis. Assuming that the head moves up and down due to breathing, rigid translational motions in only y(phase encoding axis) direction are treated Unlike the conventional Iterative phase retrieval algorithm, this method is based on the MRI imaging process and analyzing of Image property A new constraint condition with which the motion component and the true image component in the MRI signal can be separated by a simple algebraic operation is extracted After the x(read out) directional Fourier transformation of MRI signal is done, the y(phase encoding) directional spectrum phasing value is Just an algebraic sum of the Image component and the motion component Meanwhile, as It is known that the density of subcutaneous fat area is almost uniform in the head tomographs, the density distribution along a y directional line on this fat area is regarded as symmetric shape If the density function is symmetric, then the phase of spectrum changes linearly with the position Hence, the departure component from the linear function can be separated as the motion component Based on this constrant condition, the new method of artifact cancellation is presented Finally, the effectiveness of this algorithm IS shown by using a phantom with simulated motions.

  • PDF