DOI QR코드

DOI QR Code

Optimization of the Flapping Motion for the High Maneuverability Flight

기동성 비행을 위한 날갯짓 경로의 최적화

  • Received : 2012.02.06
  • Accepted : 2012.04.11
  • Published : 2012.06.01

Abstract

The study considers the high maneuverability flight and path optimization is conducted to investigate the appropriate generation of the lift and thrust considering the angle of the stroke plane. The path optimization problem is defined according to the various purposes of the high maneuverability flight. The flying purposes are to maximize thrust force, lift force and both lift and thrust forces. The flapping motion of the airfoil is made by a combined sinusoidal plunging and pitching motion in each problem. The optimization process is carried out by using well-defined surrogate models. The surrogate model is determined by the results of two-dimensional computational fluid dynamics analysis. The Kriging method is used to make the surrogate model and a genetic algorithm is utilized to optimize the surrogate model. The optimization results show the flapping motions for the high maneuverable flight. The effects on the generation of lift and thrust forces are confirmed by analyzing the vortex.

본 논문에서는 높은 기동성을 목적으로, 적절한 양력과 추진력이 발생하도록 스트로크 평면의 경사각을 고려하여 경로최적화를 수행한다. 기동성비행은 추진력을 최대화하는 비행, 양력을 최대화하는 비행, 양력과 추진력을 동시에 최대화하는 비행 세 가지로 정의하고 날갯짓운동은 단순한 사인함수로 이루어진 플런징과 피칭운동으로 정의하였다. 경로최적화 과정에서 직교배열표를 이용하여 후보점을 생성하고, 그 후보점에서 2 차원 비정상 유동해석을 하였다. 유동해석 결과를 바탕으로 크리깅방법을 이용하여 근사모델을 생성하였다. 그리고 설계정식화를 정의하고 유전알고리즘을 이용하여 최적화를 수행하였다. 세 가지 목적의 날갯짓 경로의 최적화를 통해 기동성비행을 위한 날갯짓 경로를 제시하였다. 또한 날갯짓 운동으로 인해 생성되는 와류를 분석함으로써 양력과 추진력의 발생원리를 확인하였다.

Keywords

References

  1. Dickinson, M. H., Lehmann, F. O. and Sane, S. P., 1999, "Wing Rotation and the Aerodynamic Basis of Insect Flight,"Science, Vol. 284, pp. 1954-1961. https://doi.org/10.1126/science.284.5422.1954
  2. Wang, Z. J., 2004, "The Role of Drag in Insect Hovering," The Journal of Experimental Biology, Vol. 207, pp. 4147-4155. https://doi.org/10.1242/jeb.01239
  3. Lee, J.-S., Kim, J.-H. and Kim, C., 2008, "Numerical study on the Unsteady-Force-Generation Mechanism of Insect Flapping Motion," AIAA Journal, Vol.46, No.7, pp.1529-1537.
  4. Tuncer, H. I. and Kaya, M., 2005, "Optimization of Flapping Airfoils for Maximum Thrust and Propulsive Efficiency," AIAA Journal, Vol. 43, No. 11, pp. 2329-2336. https://doi.org/10.2514/1.816
  5. Kaya, M. and Tuncer, H. I., 2007, "Nonsinusoidal Path Optimization of a Flapping Airfoil," AIAA Journal, Vol. 45, No. 8, pp. 2075-2082. https://doi.org/10.2514/1.29478
  6. Choi, J. S., Zhao, L., Park, G. J., Agrawal S. K. and Kolonay, R. M., 2011, "Enhance of a Flapping Wing Using Path and Dynamic Topology Optimization," AIAA Journal, Vol. 49, No. 12, pp. 2616-2626. https://doi.org/10.2514/1.J050834
  7. ANSYS ICEM CFD, 2009, Reference manual, Ver. 12.1, ANSYS Inc
  8. ANSYS FLUENT, 2009, User's Guide, Ver. 12. 1, ANSYS Inc
  9. PIDOTECH Inc, 2011, PIAnO User's Manual, Ver. 3.3
  10. Fry, S. N., Sayaman, R. and Dickinson, M. H., 2005, "The Aerodynamics of Hovering Flight in Drosophila," The Journal of Experimental Biology, Vol. 208, pp. 2303-2318 https://doi.org/10.1242/jeb.01612
  11. Wang, Z. J., 2005, "Dissecting Insect Flight," Fluid Mechanics, Vol. 37, pp. 183-210 https://doi.org/10.1146/annurev.fluid.36.050802.121940
  12. Zaitsev, A. A. and Sharina L. V., 1983, "Aerodynamic Calculation of Normal Hovering Flight" Fluid dynamics, Vol. 18, No. 4, pp. 554-560.
  13. de Croon, G.C.H.E., de Clercq, K.M.E., Ruijisink, R., Remes, B. and de Wagter, C., 2009, "Design, Aerodynamics, and Vision Based Control of the DelFly," International Journal of Micro Air Vehicle, Vol. 1, No. 2, pp. 71-97. https://doi.org/10.1260/175682909789498288
  14. Kim, D. K. and Choi, H. C., 2007, "Two Dimensional Mechanism of Hovering Flight by Single Flapping Wing," Journal of Mechanical Science and Technology, Vol. 21, No. 1, pp. 207-221. https://doi.org/10.1007/BF03161726
  15. Wilkins, P. and Knowles, K., 2007, "Investigation of Aerodynamics Relevant to Flapping Wing Micro Air Vehicle,"37th AIAA Fluid Dynamics Conference and Exhibit.
  16. Wang, Z. J., Birch, J. M. and Dickinson, M. H., 2004, "Unsteady Forces and Flows in Low Reynolds Number Hovering Flight: Two-Dimensional Computations vs Robotic Wing Experiments," Journal of Experimental Biology, Vol. 207, No. 3, pp. 449-460. https://doi.org/10.1242/jeb.00739
  17. Park, G. J., 2007, Analytical Methods in Design Practice, Springer-Verlag, Germany
  18. Lee, K. H., Eom, I. S., Park, G. J. and Park, W. I., 1996, "Robust Design for Unconstrained Optimization Problems Using the Taguchi Method," AIAA Jornal, No. 5, pp. 1059-1063.
  19. Lee, K. H., Hwang, K. H, Kwon, W. S. and Park, G. J., 2000, "Structural Design Considering Interactions in Dicrete Design Spaces," Trans. of the KSME(A), Vol. 1, No. 1, pp. 708-713.
  20. Cho, T. M., Ju, B. H., Jung, D. H. and Lee, B. C., 2006, "Reliability Estimation Using Two-Staged Kriging Metamodel and Genetic Algorithm," Trans. of the KSME(A), Vol. 30, No. 9, pp. 1116-1123.
  21. Lee, T. H., Lee, C. J. and Lee, K. K., 2003, "Shape Optimization of a CRT based on Response Surface and Kriging Metamodels," Trans. of the KSME(A), Vol. 27, No. 3, pp.381-386.
  22. Simpson, T. W., Mauery, T. M., Korte, J. J. and Mistree, F., 2001, "KrigingModels for Global Approximation in Simulation-Based Multidisciplinary Design Optimization," AIAA Journal, Vol. 39, No. 12, pp. 2233-2241. https://doi.org/10.2514/2.1234