• Title/Summary/Keyword: Organic cation

Search Result 487, Processing Time 0.024 seconds

An Analysis of Growth Conditions of old Trees in Yangdong Villages (양동마을의 노거수 생육실태 분석)

  • Kim, Young-Hun;Deng, Bei-Jia;You, Ju-Han
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.2
    • /
    • pp.95-107
    • /
    • 2020
  • The purpose of this study is to provide the basic data by analyzing and analysing the Growth Conditions of old Trees in Yangdong village. This study investigated about the conducted on tree information, soil information, and tree health. The result are as follows. The trees information in Yangdong Village consists of Juniperus chinensis, Salix chaenomeloides, Salix pseudolasiogyne, Celtis sinensis, Zelkova serrata, Gleditsia japonica, and Gleditsia sinensis trees, The range of height was 4.0~17.0m, and the diameter was 0.51~1.34m, Juniperus chinensis trees of No.17 was most large. In the results of soil analysis, there showed that acidity was pH4.1~6.3, hardness of 5~48mm, organic matter content of 21.2~29.1g/kg, electrical conductivity(EC) of 0.34~1.76dS/m, available P2O5 of 79.8~451.6mg/kg, exchangeable K of 0.22~1.71cmol+/kg, exchangeable Ca of 4.98~7.44cmol+/kg, exchangeable Mg of 0.67~2.19cmol+/kg, exchangeable Na of 0.19~1.04cmol+/kg and cation exchange capacity(C.E.C) of 7.23~13.02cmol+/kg. As a result, the highest number of tree health levels is 8 of 11trees of Celtis sinensis, 2 of 7trees of Zelkova serrata, and 3 of Gleditsia sinensis, and 13 of 30 trees of health levels, The Older trees with high infection, spoil and hollowed part were the remaining trees except for the healthy part. Relatively, more than half of the number of targets is infected, decay, and the hollowed site, and it is necessary to perform surgery on the damaged area. In addition, preservation and protection measures should be implemented by supplying root nutrients for trees, controlling nutrients in the body to prevent secondary and tertiary damages that cause the infection site to metastasize to the health site, In order to continually monitor the trees, measures to improve the location environment and management of the trees should be sought.

Effect of Soil Characteristics and Fertilizers Application on Fresh Root Yield of Aralia continentalis K. -I. Survey on Cultivation Methods and Soil Characteristics in the Main Producting Districts (독활(獨活) (Aralia continentalis K.)주산지(主産地) 토양특성(土壤特性)과 시비양분(施肥養分)이 근경수량(根莖收量)에 미치는 영향(影響) -I. 재배법(栽培法) 실태(實態) 및 토양특성(土壤特性) 조사(調査))

  • Oh, Dong-Hoon;Han, Soo-Gon;Kim, Gap-Cheol;Na, Jong-Seong;Park, Keon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.27-32
    • /
    • 1994
  • These studies were Conducted to survey cultivation methods, and to analyze soil chemical properties for stable production of Aralia continentalis K., a promising medicinal crop, in the main producting districts. Aralia continentalis K. was cultivated with planting budstocks in distances of $90cm{\times}60cm$ for 3~4 years in the same field, and application rates were N 10~31 kg/10a and P, K 8~17/10a using inorganic fertilizer, that is compound fertilizer(21-17-17) for basal dressings and urea for topdressings. Most of all, the soil surveyed was coarse loamy class which was well drained and soil depth is 50~150cm in the valleys. Soil pH was low, and content of organic matters and av. $P_2O_5$ was abundant but that of exchangeable cation such as Ca, Mg, K was deficient. The relationship between growth characteristics and weight of fresh root was positive correlation in the order of No. of root, stem width, No. of node and branch, plant height and root width. On the path coefficiant analysis, the relationship between content of soil K, Ca and root yield was more apparent than other chemical properties.

  • PDF

Effect of Nitrogen Rate on the Ionic Balance and the Variance with Leaf Sequance in Mulberry (Morus alba L.) Leaves (시용질소양이 상엽중 이온 균형 및 엽위별 변화에 미치는 영향)

  • 이운주
    • Journal of Sericultural and Entomological Science
    • /
    • v.24 no.2
    • /
    • pp.43-54
    • /
    • 1983
  • In a field trial, the influence was studied by measurement of growth and leaf yields and chemical composition (in organic cations and anions and total nitrogen) with two nitrogen dressings (lower nitrogen treatment 25kg and higher nitrogen treatment 75kg urea/10a as the summer fertilizer) after the summer cutting. The results were as follows; 1. With increasingn nitrogen dressing, branch length and weight were enchanced. The fresh weight of leaves was higher to be 273.6kg/10a in the higher nitrogen treatment than in the lower nitrogen treatment on 20 September. 2. The moisture content of leaves lasted above 73% until on 30 August. Afterward it decreased sharply upto 63% on 20 September. In higher nitrogen treatment it was higher about 0.1∼1.8% than in lower nitrogen treatment. The increasing nitrogen dressings combined with leaf condition led to be soft until on 10 October. 3. Dry matter weight of leaves started decreasing around on 10 September, whereas that of branches increased until around 30 September indicating that the dry matter moved to branch and root from leaves. 4. The increase in Ca$\^$2+/ content was particularly evident, whereas the K$\^$+/ and Mg$\^$2+/ decreased with growth. The Ca$\^$2+/ content was much higher in the high nitrogen treatment than in the low nitrogen treatment. 5. With rapid decrease in total nitrogen and water in the leaves around the end of August, the Ca$\^$2+/ and Cl$\^$-/ which were higher in the lower part moved up to the upper part. Whereas the K$\^$+/, H$_2$PO$_4$$\^$-/ and SO$_4$$\^$2-/ which were higher in the upper part moved down to the lower part. 6. Total nitrogen content decreased sharply 3,200me/kg DM to 2,000me/kg DM at the end of August changing the maxmium content of total nitrogen from upper to lower part in the low nitrogen treatment on 12 September and in the high nitrogen treatment on 22 September, and an apex of branches was died and fallen 10 days after respectively. 7. The sum of cation in leaves (∑C) increased from 1400me/kg DM to 1600me/kg DM with growth, wherease that of anions (∑A) was approximatly the same during the whole growing season. As the result, the ionic balance (C-A) increased from 1000me/kg DM to 1200me/kg DM. 8. ∑C, ∑A and (C-A) were higher in the high nitrogen treatment than in the low nitrogen treatment due to be much higher of Ca$\^$2+/ content and higher of NO$\^$-/$_3$, SO$\^$2-/$_4$ and H$_2$PO$_4$$\^$-/ content.

  • PDF

The Change of Physico-Chemical Properties of Paddy Soil in Reclaimed Tidal Land (간척지 논토양의 물리화학성 변동에 관한 연구)

  • Yang, Chang-Hyu;Yoo, Chul-Hyun;Jung, Ji-Ho;Kim, Byeong-Su;Park, Woo-Kyun;Ryu, Jin-Hee;Kim, Taek-kyum;Kim, Jae-Duk;Kim, Seong-Jo;Baek, Seung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.94-102
    • /
    • 2008
  • The physico-chemical properties of ten reclaimed saline soils in five soil series of west-south Korea were analyzed according to the years past after reclamation. The soil samples were collected at the same sites two times in 2000 and 2004. The physico-chemical properties in 2000 had been changed in 2004 as follows. Soil salinity was the highest in Podu and desalinization period was the shortest in Munpo and Yeompo. Seasonal ground water level were above 100 cm in all regions that were 30 years old reclaimed tidal land, which was the same results of normal paddy field. In the case of soil physical changes, bulk density increased in fine textured soil (Poseung and Podu) but decreased in coarse textured soil (Gwanghwal, Munpo, and Yeompo). Porosity decreased in fine textured soil(Poseung and Podu) but increased in coarse textured soil. These reason were as follows. Fine textured soil were increased in solid phase but decreased in liquid and gaseous phase. Coarse textured soil, Gwanghwal and Munpo except for Yempo, were increased in gaseous phase but decreased in solid and liquid phase. Yempo that have low water table level were increased in liquid phase but decreased in solid and gaseous phase. Soil hardness increased in 4 soil series except for Munpo. In the case of chemical property changes, although there were more or less difference, it showed decreasing tendencies. Soil pH, the content of organic matter, available phosphate, and available silicate of five soil series were decreased during the four years. The content of exchangeable cation also decreased except for magnesium.

Growth Environment and Vegetation Structure of Cephalotaxus koreana Nakai in South Korea Natural Habitats (국내 개비자나무 자생지 생육환경 및 식생구조)

  • Kim, Young Ki;Kim, Joon Seon;Lee, Kap Yeon;Kim, Moon Sup
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.384-395
    • /
    • 2018
  • This study was carried out to investigate the environment factors including community structure and soil characteristics in the wild habitats of Cephalotaxus koreana, and offers the basic information for habitats conservation and restoration. Most of the wild habitats were located at altitudes between 148~835 m with inclinations ranged as $12{\sim}32^{\circ}$. The average soil pH was 4.7~5.9, soil organic matter was 5.72~15.99%, cation exchange capacity was $14.1{\sim}19.9cmolc/kg^{-1}$ and exchangeable $K^+$, $Ca^{2+}$, $Mg^{2+}$ was 0.25~0.48 cmolc/kg, 0.79~6.68 cmolc/kg, 0.31~1.73 cmolc/kg, respectively. The dominant species of tree layer were found to be dominated by Quercus dentata in Jekbo-san (C1), Acer pictum in Bogae-san (C2), Acer pseudosieboldianum in Geumwon-san (C3), Q. serrata in Jiri-san (C4), Zelkova serrata in Baegun-san (C5), and Q. acutissima in Duryun-san (C6). The Species diversity (H') was 0.854~1.234, evenness (J') was 0.654~0.993, and dominance (D) was found to be 0.067~0.346. Correlation coefficients analysis based on environmental factors, community structure and value of species diversity shows that growth of Cephalotaxus koreana is correlated with species diversity and evenness. This result show that Cephalotaxus koreana habitats located in mature stands.

Soil Characteristic of Plow and Compaction Layer in Fluvio-marine Deposit Paddy Soil (하해혼성 충적층 논토양 작토층과 경반층의 토양특성)

  • Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.364-370
    • /
    • 2009
  • This study was conducted to survey, analyze on the compaction layer and the plow layer at Jeonbug and Jisan series paddy soil, which is the representative soil in fluvio-marine and local alluvium, respectively. The depths of surface soil were 12.6 and 12.7 cm in Jeonbug and Jisan series, respectively. A plowing depth was 10.5 cm. The properties of compaction layer in two soil series were as follows. The hardness were $14.7kg\;cm^{-2}(25.3mm)$ and $8.7kg\;cm^{-2}(22.1mm)$ in Jeonbug and Jisan series, respectively. The thickness were 22.3 cm and 17.8 cm in Jeonbug and Jisan series, respectively. The depth of soil compaction, which means depth from surface, were 15 and 20 cm in Jeonbug and Jisan series, respectively. The relationship between the hardness of compaction layer and the depth of surface soil showed negative correlation, however relationship between the hardness and the thickness of compaction layer showed positive correlation. Soil temperature was lower in compaction layer than in plow layer. This temperature differences between compaction layer and plow layer were from 1.0 to $2.5^{\circ}C$ in Jeonbug series and from 0.7 to 2.1 in Jisan series. The soil physical properties of compaction layer were higher in bulk density and solid phase and lower in porosity and gaseous phase than those of plow layer in all soil series. The soil chemical properties of compaction layer were higher in pH, content of available silicate, exchangeable calcium and magnesium but lower in total nitrogen, content of organic matter and available phosphate than those of plow layer in all soil series. Cation exchangeable capacity and content of exchangeable potassium were similar between compaction layer and plow layer in Jeonbug series, however, in Jisan series these were lower in compaction layer than in plow layer. Elution amount of inorganic nitrogen were lower in compaction layer than in plow layer in all soil series. The content of soluble Fe and Mn were plenty in compaction layer compared with plow layer and these tendency was apparent in Jeonbug series. The water depth decrease were fast until the latter part of June, and were slow as $1{\sim}3mm\;day^{-1}$ for July and August, and were fast again from september. Rice roots distributions as each soil series and tillage method were 25 cm at rotary plowing in Jeonbug series, 30 cm at deep plowing in Jeonbug series, and 20 cm at tillage in Jisan series. Dry weight per m2 at heading stage were much in order of deep plowing in Jeonbug series, rotary plowing in Jeonbug series, and tillage in Jisan series.

A Study on the Botany of New Natural Habitats of Abeliophyllum distichum Nakai in the Byeonsanbando National Park (변산반도국립공원 내 새로운 미선나무 자생지의 식물학적 연구)

  • Oh, Hyun Kyung;Soh, Min Seok;Rho, Jae Hyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.2
    • /
    • pp.4-25
    • /
    • 2011
  • This study was performed in 2010 to examine the flora and vegetation structure and chemical characteristics of soil in the growing community of Abeliophyllum distichum, located in the Byeonsanbando National Park. This Abeliophyllum distichum community has more individual numbers in Cheongrim-ni and Jungkye-ri, Byeonsan-myeon, and Buan-gun area, which is designated as a Natural Monument (No. 370), and also where the habitat conditions for Abeliophyllum distichum is more favorable. The authors recorded 100 taxa with 45 families, 82 genus, 93 species, 4 varieties, and 3 forms. Among them, species such as Abeliophyllum distichum (critically endangered), Asarum maculatum (near threatened) and Chionanthus retusa (near threatened), which are categorized as rare plants, were recorded. According to the list of Korean endemic plants, 4 taxa, particularly Philadelphus schrenckii, Abeliophyllum distichum, Weigela subsessilis, and Lonicera subsessili, were recorded. The community of Abeliophyllum distichum is located in the northwest slope of Baekcheon watershed and the community is comprised of healthy soil. The community structure was classified into three: the Castanea crenata community, Zelkova serrata community, and Quercus serrata community. The Castanea crenata community is composed of the Cornus walteri, Platycarya strobilacea, Zelkova serrata, Rhamnella frangulioides, arranged in terms of importance percentage. The Zelkova serrata community is composed of Celtis sinensis, Quercus aliena, Styrax japonica, and Acer pseudo-sieboldianum, also according to importance percentage. As for the Quercus serrata community, it is composed of Quercus variabilis, Castanea crenata, and Prunus sargentii, also arranged in terms of importance percentage. The importance percentage of Abeliophyllum distichum is 6.6% in the Castanea crenata community, 5.6% in the Zelkova serrata community and 5.1% in the Quercus serrata community. Moreover, in order of chemical characteristics of soil pH, electrical conductivity, available phosphoric, organic matter, and exchangeable cation (K, Ca, Mg) are analyzed. The No. 3 site was relatively higher than other districts of the same chemical characteristics of soil.

Location Environment and Vegetation Structure of the Aconitum austrokoreense Habitat (세뿔투구꽃 서식지의 입지환경 및 식생구조)

  • Cho, Seon-Hee;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.2
    • /
    • pp.165-178
    • /
    • 2021
  • Owing to the lack of consistent research on endangered plant species in Korea, there are insufficient data to preservespecies and expand habitats. This study analyzed the preferred habitat and threats to the survival of Aconitum austrokoreense, found on Baekwun Mountain in Gurye-gun, Gwangyang-si, Jeollanam-do Province, and classified as a level two endangered wild plant by the Ministry of Environment, by investigating major environmental factors such as climate, location, soil, and stand structure. By examining five selected sites inhabited by Aconitum austrokoreense on BaekwunMountain, this study found that the habitat had an altitude of 420 to 675 m above sea level and showed a northeast tendency, spreading over a range of inclination angles between 15° and 37°. The average number of plants across the five sites was 156. Site 4 (550 m) had the highest density of 372 plants, with an average height of 0.6 m. The average soil moisture and relative light intensity were 20.48% and 7.34%, respectively. Layer soil was presumed to be sandy loam, characterized by high sand content and good drainage. The habitat had average soil pH of 5.2, average organic matter of 16.46%, average nitrogen of 0.86%, average available phosphate of 11.86 mg/kg, average electrical conductivity of 0.44 dS/m, and average cation exchange capacity of 37.04 cmolc/kg. The total carbon in soil averaged 10.68%. From the analysis of the vegetation structure of sites inhabited by Aconitum austrokoreense, the dominant populations were Pinus koraiensis and Lindera erythrocarpa in Site 1, Magnolia obovata and Carpinus laxiflora in Site 2, Zelkova serrate and Quercus variabilis in Site 3, Staphylea bumalda and Lindera erythrocarpa in Site 4, and Morus bombycis,Styrax japonicus, and Carpinus laxiflora in Site 5. With most habitats located near trails and sap collection sites of Acer pictum, the species were exposed to artificial damage and interference threats.

Diagnosis of Real Condition and Distribution of Protected Trees in Changwon-si, Korea (창원시 보호수의 분포현황과 실태진단)

  • You, Ju-Han;Park, Kyung-Hun;Lee, Young-Han
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.59-70
    • /
    • 2011
  • The purpose of this study is to present raw data to systematically and rationally manage the protected trees located in Changwon-si, Korea. This study investigated about the present condition and the information of location, individual, management, health and soil. The results are as follows. The protected trees were located in 26 spots, and species of trees were 9 taxa; Zelkova serrata, Celtis sinensis, Aphananthe aspera, Ginkgo biloba, Carpinus tschonoskii, Pinus densiflora for. multicaulis, Quercus variabilis, Pinus densiflora and Salix glandulosa. In protected tree types, shade trees were the most, and the majority of theirs were 200 years or more in age. The range of altitude was 14~173m, and the number of trees located in flat fields was the most. For location types, village and field and mountain were presented in the order and, in land use, land for building was the most. The range of height was 8.0~30.0m, 0.6~5.1m in crown height, 240~700cm in diameter of breast and 210~800cm in diameter of root. In case of crown area, Zelkova serrata of No.5 was most large. The status boards were mostly installed except No.23 and No.26. The sites with fence were 9 spots, and the site with stonework were 14 spots. The sites with the support beam were 5 spots, and most sites were not covered up with soil. The materials of bottom were soil, gravel and vegetation in the order. The range of withering branch rate was 0~40%, and peeled bark rate was 0~60%. The sites made holes were 23 spots, and the hole size of Aphananthe aspera of No.12 was the largest. The sites disturbed by human trampling were 7 spots, the sites by disease and insects of 2 spots, the sites by injury of 23 spots and the sites by exposed roots of 13 spots. In the results of soil analysis, there showed that acidity was pH 4.5~8.0, organic matter content of 3.5~69.8g/kg, electrical conductivity(EC) of 0.11~2.87dS/m, available $P_2O_5$ of 3.0~490.6mg/kg, exchangeable K of 0.10~1.05cmol+/kg, exchangeable Ca of 1.41~16.45cmol+/kg, exchangeable Mg of 0.37~1.96cmol+/kg, exchangeable Na of 0.25~2.41cmol+/kg and cation exchange capacity(C.E.C) of 8.35~26.55cmol+/kg.

Estimation of carbon storage in reclaimed coal mines: Focused on Betula platyphylla, Pinus koraiensis and Pinus spp. plantations (폐탄광 산림복구지의 수종별 탄소 저장량 추정: 자작나무, 잣나무, 소나무류 식재지를 중심으로)

  • Kim, Gwangeun;Kim, Seongjun;Kim, Hyun-Jun;Chang, Hanna;Kim, Hyungsub;Park, Yong-Ha;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.733-743
    • /
    • 2020
  • We estimated the carbon storage of coal mines reclaimed using Betula platyphylla (BP), Pinus koraiensis (PK), and Pinus spp. (PS, Pinus densiflora, Pinus rigida, and Pinus thunbergii). The carbon storage of tree biomass (TB), forest floor(FF), mineral soil (MS), and the total forest were quantified. Reclaimed sites were located in Gangwon-do, Gyeongsangbuk-do, and Jeollanam-do; reclamation was conducted at various times in each region. The carbon storage (ton C ha-1) in FF (BP: 3.31±0.59, PK: 3.60±0.93, PS: 4.65±0.92), MS (BP: 28.62±2.86, PK: 22.26±5.72, PS: 19.95±3.90), and the total forest(BP: 54.81±7.22, PK: 47.29±8.97, PS: 45.50±6.31) were lower than that of natural forests (NF). The carbon storage in TB was lower in BP (22.57±6.18) compared to NF, while those in PK(21.17±8.76) and PS (20.80±6.40) were higher than in NF. While there were no significant differences in the carbon storage of TB, FF, and the total forest among tree species, results from MS showed a significant difference among species. TB and the total forest carbon storages in all sites increased after reclamation. Soil pH and cation exchange capacity values in BP and PS were lower than in NF. Amounts of labile carbon, available phosphate, and microbial biomass carbon in reclaimed sites were less than half of NF. There are a number of methods that could increase the reclamation efficiency. Applications of lime or organic fertilizers, as well as tillage operations, may improve soil properties in reclaimed coal mines. Additionally, pruning and thinning would increase tree growth thereby increasing carbon storage.