• Title/Summary/Keyword: Organic acids addition

Search Result 344, Processing Time 0.022 seconds

Development of Functional Vinegar by Using Cucumbers (오이를 이용한 기능성 식초 음료 개발)

  • Hong, Sung-Min;Moon, Hyun-Sil;Lee, Ju-Hye;Lee, Hae-In;Jeong, Ji-Hye;Lee, Mi-Kyung;Seo, Kwon-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.927-935
    • /
    • 2012
  • This study was performed to develop functional vinegar by using cucumbers through two stages of fermentation. The alcohol content was maximized (7.8%) after 6-days of alcohol fermentation at $25^{\circ}C$ by adjusting the initial sugar concentration to $15^{\circ}Brix$, and vinegar with an acidity of 5.8% was obtained after 12-days of acetic acid fermentation at $30^{\circ}C$. The major sugars in the produced vinegar were glucose and fructose, which were present in concentrations of 3,067.26 and 395.73 mg%, respectively. The major organic acids were acetic acid and succinic acid, which were present in concentrations of 4,410.5 and 841.11 mg%, respectively. The total free amino acid content of the cucumber vinegar was 181.45 ${\mu}g/mL$ and citrulline, valine, aspartic acid, asparagine, and ornithine were the major amino acids. The inorganic components included various alkaline elements, such as K, Ca, and Mg. In addition, experimental methods to assess the DPPH and $ABTS^+$ radical-scavenging ability, reducing power, and ${\beta}$-carotene bleaching activity showed that the cucumber vinegar had strong antioxidant properties. The total polyphenol content, which are the major components responsible for the antioxidant activities of the cucumber vinegar, was 40.14 mg/100 mL. The cucumber vinegar showed significantly higher hepatic aldehyde dehydrogenase activity when compared to the alcoholic control (negative) and the marketing drink (positive), resulting in decreased plasma acetaldehyde concentrations in rats. These results demonstrate that cucumber vinegar possesses antioxidant properties and holds great promise for use in preventing hangovers.

Acetic acid fermentation properties and antioxidant activity of lemongrass vinegar (레몬그라스 식초의 초산발효 특성과 항산화 활성)

  • Yi, Mi-Ran;Kang, Chang-Hee;Bu, Hee-Jung
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.680-687
    • /
    • 2017
  • This study investigated acetic acid fermentation properties and antioxidant activity of vinegar by addition of lemon grass to develop high quality vinegar by using lemongreass. Traditional brown rice wine contained 5% lemongrass powder and had an alcohol content of 7.2%. The wine was fermented by Acetobacter. sp. RIC-V and made into lemongrass vinegar (LV). The pH and total acidity of the LV were 3.13% and 7.21%, respectively. Fructose was detected whereas glucose, sucrose, and maltose were not detected. Among organic acids, acetic acid was highest at 3658.6 mg%; trace amounts of lactic acid, citric acid, malic acid, tartaric acid, and oxalic aicd were detected. Of the 17 free amino acids, glutamic acid, histidine, alanine, and proline were mainly detected. To conduct total polyphenol content and ABTS radical scavenging activity, 3% and 5% lemongrass powder (P3LV, P5LV) and 1%, 2%, and 3% of lemongrass extract (E1LV, E2LV, E3LV) were added to LV, respectively. Total phenolics increased as the added lemongrass powder and extract increased. Total phenolics were 490.9, 559.4, and $895.7{\mu}g$ gallic acid equivalents/mL in brown rice vinegar, LV, P5LV. ABTS radical scavenging activities were 43.2%, 58.0%, and 91.0% in brown rice vinegar, LV, P5LV, respectively. These results show that lemongrass vinegar has considerable potential as a high quality functional vinegar with antioxidative effects.

Physicochemical Characteristics of Korean Traditional Wine Fermented from Foxtail Millet (Setaria italica Beauvios) and Nuruk at Different Addition Rates (누룩 및 조 첨가량에 따른 전통발효주의 이화학적 특성)

  • Woo, Koan-Sik;Lee, Jae-Saeng;Ko, Jee-Yeon;Song, Seuk-Bo;Oh, Byeong-Geun;Kang, Jong-Rae;Nam, Min-Hee;Ryu, In-Soo;Seo, Myung-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.298-303
    • /
    • 2010
  • This study was carried out to compare the physicochemical characteristics of Korean traditional wine fermented from foxtail millet and nuruk at different mixing rates. The alcohol contents of fermented wine ranged from 12.70 to 13.38%. Two kinds of commercial nuruks, SH and BS nuruk, were used. The brix degrees of foxtail millet wine fermented by SH and BS nuruks were 21.6 and $22.4^{\circ}Bx$, respectively. The pH, total acidity, and turbidity of the wines fermented by SH and BS nuruks were 3.74 and 3.40, 1.40 and 1.51%, and 0.441 and 0.149, respectively. With an increase in the amount of foxtail millet, brix degree, pH, turbidity, b-value and L-value decreased, and total acidity and a-value increased. Total color difference (${\Delta}Eab$) parameter of the wine fermented by SH nuruk were 8.58, 22.59 and 22.55, while those by BS nuruk were 0.35, 4.08 and 7.16 in 30, 70 and 100% addition rates of foxtail millet, respectively. With an increase in the amount added of foxtail millet, glucose content decreased. The organic acids such as lactic acid and acetic acid were predominantly detected in the fermented wine. Finally, based on sensory evaluations, the wine fermented by BS nuruk showed the best overall quality at the 30% addition rate of foxtail millet.

Quality Characteristics of Brown Rice Makgeolli Produced under Differing Conditions (발효조건을 달리하여 제조한 현미 막걸리의 품질특성)

  • Baek, Chang-Ho;Choi, Ji-Ho;Choi, Han Seok;Jeong, Seok-Tae;Kim, Jae Hyun;Jeong, Yong-Jin;Yeo, Soo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.168-175
    • /
    • 2013
  • In this study we investigated the possibility of preparing brewed brown rice makgeolli, a traditional Korean rice wine, under diverse conditions. For this purpose the physicochemical characteristics of makgeolli brewed at different temperatures, utilizing a variety of nuruks, the traditional Korean fermentation agent, were studied. The alcohol content was seen to be highest when brewing occurred at $30^{\circ}C$, with the nuruk TN producing 16.2%. At $20^{\circ}C$TN produced 14.1% alcohol content. The alcohol content was therefore higher, by about 2%, for $30^{\circ}C$ fermentations than $20^{\circ}C$ fermentations. Similarly, saccharifying activity was influenced by temperature and sugar content, with a higher activity seen at $30^{\circ}C$ than at $20^{\circ}C$. As the fermentations progressed acidification petered out, with titratable acidity being 0.50-0.67% in all end samples. On the Hunter L, a, b scale; the a value decreased slightly, while the b value increased steadily during the fermentation process. Measurements of total organic acids were highest at $30^{\circ}C$, with the nuruk AK, at about 550 mg%. The content of citric acid was the highest at $30^{\circ}C$, being 230-310 mg% in all samples. However, more lactic acid was detected at $20^{\circ}C$ than at $30^{\circ}C$. Total free amino acid was highest at $30^{\circ}C$, with TN at $8,605{\mu}g/ml$, AK at $6,083{\mu}g/ml$, and RJ at $2,381{\mu}g/ml$. Total free amino acid and essential amino acid was shown to be higher at $30^{\circ}C$ than at $20^{\circ}C$. The bioactive substance ${\gamma}$-aminobutyric acid was also higher at $30^{\circ}C$, with TN at $223{\mu}g/ml$. From all of these results, we surmise that brown rice makgeolli manufacturing conditions are optimal at $30^{\circ}C$ fermentation temperatures and using the nuruk TN for brewing vinegar. In addition, the nuruk used clearly affects the quality of brown rice makgeolli and an appropriate method to determine the best nuruk for various purposes should be pursued.

Effect of amendments and their causes of rice yield increase in ill drained paddy soil (습답(濕沓)에 대(對)한 개량제(改良劑)의 효과(效果)와 유효개량제(有效改良劑)의 수도증수원인(水稻增收原因)에 관(關)한 연구(硏究))

  • Park, Chon Suh;Song, Jae Ha;Kim, Yung Sup;Lee, Chung Young;Choh, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1971
  • In order to establish the method of improving ill drained paddy soil where the accumulation of absorption inhibitor is worried in the earlier stages of rice growth, proper soil is selected and an field experiment is designed having treatments such as lime materials, none sulfate fertilizers, boron and straw etc. The data of yield and plant analysis in different stages of rice growth is eveluated and discussed to obtain following summaries. (1) Significant yield increase was made by the treatment of lime materials such as slacked lime or wollastonite powder, materials inhibiting the activity of microorganisms such as boron and of none sulfate fertilizers lacking inhibitor producing sources. (2) The crop scientifice causes of decreasing yield are the decreasing the number of panicles per hill, grains per panicle and the weight of grains. (3) The plant nutritional causes of decreasing yield are the lowering of nitrogen content throughout the life, phosphate content since young premodia formation stage of plant and the decreased content of magnesium, calcium and silicate in straw at harvesting stage. (4) The causes of lowering the content of various elements in rice plant grown in ill drained paddy soil are suggested as root damage by producing and accumulating absorption inhibitors such as organic acids and hydrogen sulfide etc, from the following observed facts; (a) In young premodia formation stage, attaining to the maximum production and accumulation of absorption inhibitor, the phosphate accumulation in plant was smaller in the phosphate plots than without phosphate plots and much higher in the neutralized plots by adding lime materials. (b) In the plots of straw addition, the potassium content in plant at the young premodia formation stage is very low probabley due to root damage by absorption inhibitor produced from the process of straw decomposition but higher at the stage of harvesting probably due to the immetabolic negative absorption of damaged roots. (c) The effect of boron, known as the inhibitor of microorganism activity to decompose organic matter, is apparent. (d) The effect of nonsulfate fertilizer treatment, having no source of producing inhibitor such as hydrogen sulfide, was significant. (e) All the yield components, decided around the young premodia formation stage attaining to the maximum inhibitor concentration in soil and minimum root activity, are significantly decreased.

  • PDF

A Study on the Making of Sweet Persimmon (Diospyros kaki, T) Wine (단감(Diospyros kaki, T) 와인 제조에 관한 연구)

  • Cho, Kye-Man;Lee, Jung-Bock;Kahng, Goon-Gjung;Seo, Weon-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.785-792
    • /
    • 2006
  • The characteristics of alcohol fermentation using sweet persimmon juice were studied in static fermentation in an effort to develop new types of functional wine. The yeast strain Saccharomyces cerevisiae KCCM 12650 was selected for use in the fermentation of sweet persimmon juice. Attempts were made to modify the sweet persimmon juice in order to find suitable conditions for alcohol fermentation. The modified sweet persimmon juice (pH 4.0) that was most suitable for alcohol fermentation contained $24^{\circ}Brix$ of sugar supplemented with sucrose as a carbon source and 0.5 g/L of $(NH_4)_2HPO_4$ as a nitrogen source. After 5 days of fermentation at $25^{\circ}C$, 12.8% of alcohol was produced from the modified juice and its pH was slightly decreased to 3.9. Browning of the wine was observed during storage due to the oxidation of phenolic compounds. The initial browning of 0.08% at $OD_{420}$ after fermentation increased to 0.40 during storage for 11 weeks at room temperature. The addition of $K_2S_2O_5$ was effective in delaying the browning of the wine. The browning of the wine decreased to 0.25 at $OD_{420}$ with the addition of 200 mg/L of $K_2S_2O_5$. The wine produced in this study contained some organic acids such as malic acid (6.82% g/L) and succinic acid (1.40 g/L), some minerals such as $K^+$ (947.8 mg/L) and $Mg^{2+}$ (36.4 mg/L), as well as soluble phenolics (779 mg/L of gallic acid equivalent). Schisandra fruit was added to the sweet persimmon juice during alcohol fermentation in order to improve the sour taste and flavor. The best sensory quality (taste, flavor, and color) was obtained by adding 0.5% schisandra fruit.

Carbohydrate Metabolism in Preimplantation Stage Embryos and the Role of Metabolites (착상전 초기 배아에서 탄수화물 대사와 그 대사물의 역할)

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2008
  • Proper development of fertilized oocyte to blastocyst is a key step in mammalian development to implantation. During development of preimplantation embryos, the mammalian embryo needs supply the energy substrate for keep viability. Usually mammalian oocyte get substrate especially energy substrate from oviduct and uterus, because it does not store much substrate into cytoplasm during oogenesis. Carbohydrates are known as a main energy substrate for preimplantation stage embryos. Glucose, lactate and pyruvate are essential component in preimplantation embryo culture media and there are stage specific preferences to them. Glucose transporter and $H^+$-monocarboxylate cotransporter are a main mediator for carbohydrate transport and those expression levels are primarily under the control of intrinsic or extrinsic factors like insulin and glucose. Other organic substances, amino acids, lipids and nucleotides are used as energy substance and cellular regulation factor. Though since 1960s, successful development of fertilized embryo to blastocyst has been accomplished with chemically defined medium for example BWW and give rise to normal offspring in mammals, the role of metabolites and the regulation of intermediary metabolism are still poorly understood. Glucose may permit expression of metabolic enzymes and transporters in compacting morula, capable of generating the energy required for blastocyst formation. In addition, it has been suggested that the cytokines can modulate the metabolic rate of carbohydrate in embryos and regulate the preimplantation embryonic development through control the metabolic rate. Recently we showed that lactate can be used as a mediator for preimplantation embryonic development. Those observations indicate that metabolites of carbohydrate are required by the early embryo, not only as an energy source, but also as a key substrate for other regulatory and biosynthetic pathways. In addition metabolites of carbohydrate may involve in cellular activity during development of preimplantation embryos. It is suggested that through these regulation and with other regulation mechanisms, embryo and uterus can prepare the embryo implantation and further development, properly.

  • PDF

Studies on the Stability of Fenitrothion Formulations (Fenitrothion (MEP) 제제(製劑)의 화학적(化學的) 안정성(安定性)에 관(關)한 연구(硏究))

  • Park, Seung Heui
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.2
    • /
    • pp.381-398
    • /
    • 1975
  • Present work was executed to evaluate effects of adjuvants. stabilizers. moisture. pH and heavy metals on the stability of Fenitrothion in the emulsifiable concentrate. In addition, susceptibility ' of Fenitrothion in various formulations, to UV-irradiation has been also examined. The results are summarized as follows; 1. Xylene and benzene were found to be satisfactory solvents for Fenitrothion emulsifiable concentrate. As expected, polar sol vents such as aliphatic alcohols considerably reduced stability of the pesticides. 2. Of the two non-ionic emulsifiers, an alkyl aryl type Sorpol-1200, in contrast to sorbitan type Tweens, substantially reduced decomposition of Fenitrothion in the emulsifiable concentrates. Moisture and pH of emulsifiers. in the ranges studied. affected little if any. on the stabi ity of the Fenitrothion during the experiment periods. 3. Maleic anhydride, p-toluene sulfonic acid, sulfosalicylic acid, maleic anhydride-sulfosalicylic acid reduced decomposition of Fenitrothion in the emulsifiable concentrate. Addition of organic acids, however, increased liability of Fenitrothion in the emulsifiable concentrate. 4. Presence of either zinc or copper metals in the emulsifiable concentrate containing Tween-80 as a emulsifier, reduced stability of the Fenitrothion. 5. UV-irradiation, as expected, brought decomposition of Fenitrothion. The liability of Fenitrothion formulations decreased in the order, wettable powder ${\gg}$ dust > emulsifiable concentrate.

  • PDF

Physicochemical characteristics of lactic acid fermented Seomaeyaksuk (Artemisia argyi H) Sikhye added with different addition ratio of MSG (MSG 첨가 비율을 달리한 섬애약쑥(Artemisia argyi H) 식혜의 유산균 발효에 따른 이화학적 특성)

  • Shin, Jeong Yeon;Shin, Jung Hye;Kang, Min Jung;Choi, Myung Hyo;Park, Hee Rin;Choi, Jine Shang;Bae, Won Yeol;Seo, Won Tak
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.254-265
    • /
    • 2017
  • For the production of ${\gamma}-aminobutyric$ acid (GABA) contents increased Seomaeyaksuk fermentant, 0, 0.25, 0.5 and 1.0% of monosodium galutamate (MSG) was added in Seomaeyaksuk water extract 15% contained Sikhye and inoculated with Lactobacillus brevis (KI271266). Physicochemical properties were sampling and analyzed at each 1 day during 3 days fermentation. Goes on fermentation periods, the turbidity was gradually reduced, but lightness and the yellowness was increased, redness was decreased. Soluble solid was also decreased. The reducing sugars content were also decreased during fermentation. pH was 4.65-4.83 before fermentation but it was lower 3.15-3.68 after three days fermentation. The GABA contents increased by fermentation periods and it was the highest in MSG 1.0% added sample (354.38 mg/L). Fructose, glucose and sucrose contents were 50-67% decreased at three days fermentation than before fermentation. Among the organic acids, propionic acid, oxalic acid, citric acid and fumaric acid contents were decreased and lactic acid, acetic acid and succinic acid were increased during fermentation periods. Contents of total polyphenol and DPPH radical scavenging activity were the highest in MSG 0.5% added sample. From these results, we confirmed that increasing of GABA content when the manufacturing of Seomaeyaksuk lactic acid fermentation product, is possibile by addition of MSG without affecting physicochemical characteristics.

Effects of Detoxified Sulfur as a Feed Supplement on in Vitro Rumen Fermentation and Methane Mitigation (제독 유황의 반추위 발효성상 및 메탄 저감 효과 연구)

  • Kim, Seon-Ho;Islam, Mahfuzul;Biswas, Ashraf Ali;Cho, Kwang-Keun;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.743-748
    • /
    • 2020
  • Sulfate is a reductant that competes for electrons and may lower CH4 production in the rumen. This study was designed to evaluate the beneficial effect of detoxified sulfur powder supplementation on in vitro rumen fermentation and methane mitigation. A ruminally cannulated Holstein Friesian cow was used as a rumen fluid source, and commercial pelleted concentrate was used as a substrate at 1 g dry matter. Treatments included the addition of detoxified sulfur powder at the rate of 0% (Control), 0.2% (T1), 0.4% (T2), 0.6% (T3), 0.8% (T4), and 1.0% (T5) as dry matter (DM) basis. The pH, total gas (TG), methane (CH4) production, DM digestibility, organic matter (OM) digestibility, and volatile fatty acids (VFA) production were analyzed after 12 hr of incubation. The results showed that CH4 production was significantly lowest in T1 (13.78 ml) but highest in the control (20.16 ml). Insignificantly higher total VFA was observed in control and T1 (64.99 and 64.28 mM, respectively) compared to other treatments after 12 hr of incubation. After 12 hr of incubation, the significantly lowest acetate:propionate was observed in T1 (1.90) while the highest was observed in T4 (2.44). However, no significant differences were recorded for pH, TG, DM digestibility, OM digestibility, acetate, propionate, and butyrate between the control and T1. Total number of bacterial DNA copies was significantly lower in the treatment group than the control. Therefore, it can be concluded from this study that detoxified sulfur at 0.2% inclusion level is optimal for production performance and ruminal CH4 mitigation.