DOI QR코드

DOI QR Code

Development of Functional Vinegar by Using Cucumbers

오이를 이용한 기능성 식초 음료 개발

  • Hong, Sung-Min (Dept. Food and Nutrition, Sunchon National University) ;
  • Moon, Hyun-Sil (Dept. Food and Nutrition, Sunchon National University) ;
  • Lee, Ju-Hye (Dept. Food and Nutrition, Sunchon National University) ;
  • Lee, Hae-In (Dept. Food and Nutrition, Sunchon National University) ;
  • Jeong, Ji-Hye (Dept. Food and Nutrition, Sunchon National University) ;
  • Lee, Mi-Kyung (Dept. Food and Nutrition, Sunchon National University) ;
  • Seo, Kwon-Il (Dept. Food and Nutrition, Sunchon National University)
  • 홍성민 (순천대학교 식품영양학과) ;
  • 문현실 (순천대학교 식품영양학과) ;
  • 이주혜 (순천대학교 식품영양학과) ;
  • 이해인 (순천대학교 식품영양학과) ;
  • 정지혜 (순천대학교 식품영양학과) ;
  • 이미경 (순천대학교 식품영양학과) ;
  • 서권일 (순천대학교 식품영양학과)
  • Received : 2012.02.10
  • Accepted : 2012.06.14
  • Published : 2012.07.31

Abstract

This study was performed to develop functional vinegar by using cucumbers through two stages of fermentation. The alcohol content was maximized (7.8%) after 6-days of alcohol fermentation at $25^{\circ}C$ by adjusting the initial sugar concentration to $15^{\circ}Brix$, and vinegar with an acidity of 5.8% was obtained after 12-days of acetic acid fermentation at $30^{\circ}C$. The major sugars in the produced vinegar were glucose and fructose, which were present in concentrations of 3,067.26 and 395.73 mg%, respectively. The major organic acids were acetic acid and succinic acid, which were present in concentrations of 4,410.5 and 841.11 mg%, respectively. The total free amino acid content of the cucumber vinegar was 181.45 ${\mu}g/mL$ and citrulline, valine, aspartic acid, asparagine, and ornithine were the major amino acids. The inorganic components included various alkaline elements, such as K, Ca, and Mg. In addition, experimental methods to assess the DPPH and $ABTS^+$ radical-scavenging ability, reducing power, and ${\beta}$-carotene bleaching activity showed that the cucumber vinegar had strong antioxidant properties. The total polyphenol content, which are the major components responsible for the antioxidant activities of the cucumber vinegar, was 40.14 mg/100 mL. The cucumber vinegar showed significantly higher hepatic aldehyde dehydrogenase activity when compared to the alcoholic control (negative) and the marketing drink (positive), resulting in decreased plasma acetaldehyde concentrations in rats. These results demonstrate that cucumber vinegar possesses antioxidant properties and holds great promise for use in preventing hangovers.

남아도는 오이의 활용도 및 그 부가가치를 높이기 위하여 오이 식초를 제조한 후 이화학적 성분을 분석하고, 항산화 및 숙취해소 효능과 같은 기능성을 조사하였다. 초기당도를 $15^{\circ}Brix$가 되도록 조절하여 $25^{\circ}C$에서 알코올 발효하였을 때, 발효 6일째에 7.8%의 최대 알코올 함량을 얻었으며, 이를 다시 $30^{\circ}C$에서 12일간 초산발효 하여 산도 5.8%의 식초를 얻었다. 오이 식초의 주요 유리당은 glucose 및 fructose로 그 함량은 각각 3,067.26 및 395.73 mg%였고, 주요 유기산은 acetic acid 및 succinic acid로 그 함량은 각각 4410.5 및 841.11 mg%이었다. 오이 식초의 유리아미노산 총 함량은 181.45 ${\mu}g/mL$이었고, 이 중 citrulline, valine, aspartic acid, asparagine 및 ornithine이 주된 아미노산이었으며, 무기성분은 K, Ca, Mg와 같은 알칼리성 원소를 다량 함유하고 있는 것으로 나타났다. 또한 DPPH, $ABTS^+$ 라디칼 소거능, 환원력 및 ${\beta}$-carotene bleaching과 같은 실험방법을 통해 오이 식초의 항산화 활성을 측정한 결과 높은 활성을 나타내었으며, 오이 식초의 주요 항산화 활성성분인 폴리페놀의 함량은 40.14 mg/100 mL이었다. 한편, 오이 식초는 급성으로 알코올을 투여한 흰쥐의 간조직 중 알데히드 탈수소효소 활성을 높임으로써 혈장 중 아세트알데히드 농도를 효과적으로 낮추었다. 따라서 본 연구결과를 통해 오이를 주원료로 하여 제조한 오이 식초는 상당한 항산화 및 숙취해소 효과가 있는 것으로 판단되며, 이를 기능성식품 소재로 활용이 가능하리라 생각된다.

Keywords

References

  1. Park KH. 2001. Studies on the optimization of fermentation condition for the production of cucumber vinegar. MS Thesis. Kyunghee University, Seoul, Korea. p 1-7.
  2. Jeong MH. 2009. A study on improvement directions and management practices of environmentally-friendly cucumber farm with emphasis on Jeonnam eastern around area. MS Thesis. Sunchon University, Sunchon, Korea. p 20-25.
  3. Park HS, Park WS, Kim MR. 2004. Quality characteristics of commercial Oiji , Korea cucumber pickle. Korean J Sci Technol 36: 385-392.
  4. Kim JE. 2001. Effect of processing methods on quality of cucumber pickles. MS Thesis. Chungju National University, Chungju, Korea. p 1-46.
  5. Jung ST, Lee HY, Park HJ. 1995. The acidity, pH, salt content and sensory scores change in Oyijangachi manufacturing. J Korean Soc Food Nutr 24: 606-612.
  6. Jeong YJ, Seo KI, Kim KS. 1996. Physicochemical properties of marketing and intensive persimmon vinegars. J East Asian Soc Dietary Life 6: 355-363.
  7. Lee DS, Ryu IH, Lee GS, Shin YS, Joen SH. 1999. Optimization effect against lipase activity in preparation of aloe vinegar by Acetobacter sp. and inhibitory. J Korean Soc Agric Chem Biotechnol 42: 105-110.
  8. Kim DH. 1999. Studies on the production of vinegar from fig. J Korean Soc Food Sci Nutr 28: 53-60.
  9. Lee SH, Shim WM. 2000. Bioactive functions of vinegar. Food Sci Inst 9: 29-36.
  10. Ko YJ, Jeong DY, Lee JO, Park MH, Kim EJ, Kim JW, Kim YS, Ryu CH. 2007. The establishment of optimum fermentation conditions for Prunus mume vinegar and its quality evaluation. J Korean Soc Food Sci Nutr 36: 361-365. https://doi.org/10.3746/jkfn.2007.36.3.361
  11. Kim SW, Park JH, Jun HK. 2002. Analysis of optimum condition for production of an onionic vinegar by two-step fermentations. J Life Sci 18: 1410-1414. https://doi.org/10.5352/JLS.2008.18.10.1410
  12. Kim SW, Oh EH, Jun HK. 2008. Analysis of optimum condition for alcoholic drink production using onion extract. J Life Science 18: 871-877. https://doi.org/10.5352/JLS.2008.18.6.871
  13. Jeong YJ, Lee MH, Seo KI, Kim JN, Lee YS. 1998. The quality comparison of grape vinegar by two stages fermentation with traditional grape vinegar. J East Asian Soc Dietary Life 8: 462-468.
  14. Jeong YJ, Seo KI, Lee GD, Youn KS, Kang MH, Kim KS. 1998. Monitoring for the fermentation conditions of sweet persimmon vinegar using response surface methodology. J East Asian Soc Dietary Life 8: 57-65.
  15. Jeong YJ, Seo JH, Lee GD, Park NY, Choi TH. 1999. The quality comparison of apple vinegar by two stages fermentation with commercial apple vinegar. J Korean Soc Food Sci Nutr 28: 353-358.
  16. Jeong CH, Kwak JH, Kim JH, Choi GN, Jeong HR, Kim DO, Heo HJ. 2010. Changes in nutritional components of Daebong-gam (Diospyros kaki) during ripening. Korean J Food Preserv 17: 526-532.
  17. Slinkard K, Singleton VL. 1977. Total phenol analysis: automation and comparison with manual method. Am J Enol Vitic 28: 49-56.
  18. Blois MA. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  19. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorizing assay. Free Radical Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  20. Yildirim A, Mavi A, Kara A. 2001. Determination of antioxidant and antimicrobial activities of Rumex of aerobic life. Bioche Symp 61: 1-34.
  21. Mattaus B. 2002. Antioxidant activity of extracts obtained from residues of different oilseeds. J Agric Food Chem 50: 3444-3452. https://doi.org/10.1021/jf011440s
  22. Kato S, Kawase T, Alderman J, Inatomi N, Liber CS. 1990. Role of xanthine oxidase in ethanol-induced lipid peroxidation in rat. Gastroenterol 98: 203-210. https://doi.org/10.1016/0016-5085(90)91311-S
  23. Sund H, Theorell H. 1963. Alcohol dehydrogenase. In The Enzymes. Academic Press, New York, NY, USA. Vol 7, p 25-83.
  24. Bergmeyer HU. 1974. Alcohol dehydrogenase. In Methods of Enzymatic Analysis. Academic Press, New York, NY, USA. Vol 1, p 428-429.
  25. Koivula T, Koivusalo M. 1975. Different from of rat liver aldehyde dehydrogenase and their subcelluar distribution. Biochem Biophys Acta 397: 9-23. https://doi.org/10.1016/0005-2744(75)90174-6
  26. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  27. Food Code. 2002. Korea Foods Industry Association, Seoul, Korea. p 32.
  28. Jeong EJ. 2007. Study on the optimum condition for fermentation of strawberry wine and its quality improvement. MS Thesis. Chonbuk University, Cheongju, Korea. p 20-21.
  29. Jeong YJ. 1996. Optimization for the fermentation of persimmon vinegar using response surface methodology. PhD Dissertation. Yeunganam University, Daegu, Korea. p 4-12.
  30. Moon SY, Chung HC, Yoon HN. 1997. Comparative analysis commercial vinegars in physiochemical properties, minor components and organolepic tastes. Korean J Postharvest Sci Technol 8: 60-65.
  31. Seo JH, Kim YJ, Lee KS. 2003. Comparison of physicochemical characteristics of fruit vinegars produced from two-stage fermentation. Korean J Food Nutr 8: 40-44.
  32. Park SW, Chi SH, Hong SJ. 2002. Difference in firmness, sugars and organic acids contents of cucumber fruit based on size. J Kor Soc Hor Sci 43: 553-555.
  33. Jeong YJ, Seo KI, Kim KS. 1996. Physicochemical properties of marketing and intensive persimmon vinegars. J East Asian Soc Dietary Life 6: 355-363.
  34. Nakancn S. 1988. Food useful for preventing alcohol intoxication containing persimmon-vinegar and optimum fruits, with blood alcohol concentration reducing action. Japan patent 63: 562-566.
  35. Lee SW, Kwon JH, Yoon SR, Woo SM, Jang SY, Yeo SH, Choi JH, Jeong YJ. 2010. Quality characteristic of brown rice vinegar by different yeasts and fermentation condition. J Korean Soc Food Sci Nutr 39: 1366-1372. https://doi.org/10.3746/jkfn.2010.39.9.1366
  36. Kough K, Kim KS. 1999. Studies on quality characteristics of commercial vinegars. Bull Nat Sci 2: 171-187.
  37. Kim JH, Kim MH, Oh HK, Chang MJ, Kim SH. 2007. Seasonal variation of mineral nutrients in Korean common fruits and vegetables. J East Asian Soc Dietary Life 17: 860-875.
  38. Kwon SH, Jeong EJ, Lee GD, Jeong YJ. 2000. Preparation method of fruit vinegars by two stage fermentation and beverage including vinegar. Food Ind Nutr 5: 18-24.
  39. Jeong CH, Kang ST, Joo OS, Lee SC, Shin YH, Shim YH, Cho SH, Choi SG, Heo HJ. 2009. Phenolic content, antioxidant effect and acetylcholinesterase inhibitory activity of Korean commercial green, puer, oolong and black teas. Korean J Food Preserv 16: 230-237.
  40. Lee SK, Yu MH, Lee SP, Lee IS. 2008. Antioxidant activities and induction of apoptosis by methanol extracts from avocado. J Korean Soc Food Sci Nutr 37: 269-275. https://doi.org/10.3746/jkfn.2008.37.3.269
  41. Lee SM, Choi YM, Kim YW, Kim DJ, Lee JS. 2009. Antioxidant activity of vinegars commercially available in Korean markets. Food Eng Prog 13: 221-225.
  42. Hong J, Wie MJ, Leem DG, Park KS, Yoon TH, No KM, Jeong JY. 2010. Evaluation of antioxidants activity through the chemical assay. J Biomed Res 11: 1-8.
  43. Wang MF, Shao Y, Li JG, Zhu NQ, Rngarajan M, Lavoie EJ, Ho CT. 1998. Antioxidative phenolic compounds from sage (Salivia officinalis). J Agric Food Chem 46: 4869-4873. https://doi.org/10.1021/jf980614b
  44. Godone MF. 1990. The mechanism of antioxidant action in vitro. In Food Antioxidants. Hudson BJF, ed. Elsevier Applied Science, London, UK. p 1-18.
  45. Park SC. 1993. Ethanol oxidation is accelerated by augmentation of malate-aspartate shuttle with aspartate. Korean J Biochem 25: 137-143.
  46. Kim CI. 1999. Cause and effect of hangover. Food Industry and Nutrition 4: 26-30.
  47. Linder MC. 1991. Nutrition and metabolism of fats. In Nutritional biochemistry and metabolism with clinical applications. Linder MC, ed. Elsevier, New York, NY, USA. p 51-83.
  48. Nordmann R, Ribiere C, Rouach H. 1987. Involvement of iron and iron-catalyzed free radical production in ethanol metabolism and toxicity. Enzyme 37: 57-69. https://doi.org/10.1159/000469241

Cited by

  1. Quality Characteristics and Antioxidant Activity of Vinegar Supplemented Added with Akebia quinata Fruit during Fermentation vol.43, pp.8, 2014, https://doi.org/10.3746/jkfn.2014.43.8.1217
  2. Quality Characteristics and Biological Activities of Vinegars Added with Young Leaves of Akebia quinata vol.43, pp.7, 2014, https://doi.org/10.3746/jkfn.2014.43.7.989
  3. Comparison of the fermented property and isolation of acetic-acid bacteria from traditional Korean vinegar vol.21, pp.6, 2014, https://doi.org/10.11002/kjfp.2014.21.6.903
  4. Quality Characteristics of Vinegar Added with Different Levels of Black Garlic vol.32, pp.1, 2016, https://doi.org/10.9724/kfcs.2016.32.1.16
  5. Quality characteristics of vinegar fermented with different amounts of black garlic and alcohol vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.34
  6. Characterization of acetic acid fermentation of detoxified Rhus verniciflua vinegar produced by various yeast strains vol.23, pp.7, 2016, https://doi.org/10.11002/kjfp.2016.23.7.1042
  7. 시판 고산도 식초의 이화학적 품질 및 항산화 특성 vol.42, pp.8, 2012, https://doi.org/10.3746/jkfn.2013.42.8.1204
  8. 平成24年度食酢の研究業績 vol.108, pp.10, 2012, https://doi.org/10.6013/jbrewsocjapan.108.734
  9. Comparison of Traditional and Commercial Vinegars Based on Metabolite Profiling and Antioxidant Activity vol.25, pp.2, 2012, https://doi.org/10.4014/jmb.1408.08021
  10. 고추냉이 잎으로 제조한 식초의 품질 특성 연구 vol.21, pp.6, 2012, https://doi.org/10.20878/cshr.2015.21.6.021
  11. 배를 이용한 발효식초의 품질특성 vol.23, pp.6, 2012, https://doi.org/10.11002/kjfp.2016.23.6.778
  12. 고강도 운동을 실시한 흰쥐에 대한 오이식초음료의 항피로 효과 vol.49, pp.2, 2012, https://doi.org/10.9721/kjfst.2017.49.2.209
  13. 당근식초의 췌장 라이페이스 저해활성 및 항산화 활성 vol.33, pp.2, 2012, https://doi.org/10.7841/ksbbj.2018.33.2.104
  14. 으뜸도라지 식초의 저장기간별 품질 특성 및 항산화 활성 vol.31, pp.4, 2018, https://doi.org/10.9799/ksfan.2018.31.4.549
  15. 버섯 균사체를 이용한 발효 식초 제조 및 이화학적 특성 vol.17, pp.4, 2012, https://doi.org/10.14480/jm.2019.17.4.230
  16. Quality characteristics of fermented vinegar containing different concentration of an ethanol extract from ‘Seomaeyaksuk’ (Artemisia argyi H.) vol.27, pp.2, 2012, https://doi.org/10.11002/kjfp.2020.27.2.212
  17. Characteristics of fermented vinegar using mulberry and its antioxidant activity vol.27, pp.5, 2012, https://doi.org/10.11002/kjfp.2020.27.5.651
  18. 레몬밤 추출물을 함유한 팽화미 식초의 품질 특성 및 항산화 활성 vol.35, pp.5, 2012, https://doi.org/10.13103/jfhs.2020.35.5.503