• Title/Summary/Keyword: Ordinary Differential Equation

Search Result 257, Processing Time 0.04 seconds

ON THE STABILITY AND INSTABILITY OF A CLASS OF NONLINEAR NONAUTONOMOUS ORDINARY DIFFERENTIAI, EQUATIONS

  • Sen, M.DeLa
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.243-251
    • /
    • 2003
  • This note Presents sufficient conditions for Lyapunov's stability and instability of a class of nonlinear nonautonomous second-order ordinary differential equations. Such a class includes as particular cases a remarkably large number of differential equations with specific physical applications. Two successive nonlinear transformations are applied to the original differential equation in order to convert it into a more convenient form for stability analysis purposes. The obtained stability / instability conditions depend closely on the parameterization of the original differential equation.

A PETROV-GALERKIN METHOD FOR A SINGULARLY PERTURBED ORDINARY DIFFERENTIAL EQUATION WITH NON-SMOOTH DATA

  • Zheng T.;Liu F.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.317-329
    • /
    • 2006
  • In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.

SIMPLIFYING AND FINDING ORDINARY DIFFERENTIAL EQUATIONS IN TERMS OF THE STIRLING NUMBERS

  • Qi, Feng;Wang, Jing-Lin;Guo, Bai-Ni
    • Korean Journal of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.675-681
    • /
    • 2018
  • In the paper, by virtue of techniques in combinatorial analysis, the authors simplify three families of nonlinear ordinary differential equations in terms of the Stirling numbers of the first kind and establish a new family of nonlinear ordinary differential equations in terms of the Stirling numbers of the second kind.

A Systolic Array for Ordinary Differential Equations (상미분 방정식을 위한 시스토릭어레이)

  • 박덕원
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.66-72
    • /
    • 2003
  • An ordinary differential equation in analytical numerics is utilized to some applications, for example, physics, mechanical engineering, electrical engineering, thermodynamics and etc. But this equation has problems a lots to process in the real time processing by software method. This paper is proposed a systolic Arrays architecture for solving the Runge-Kutta method. it is one of method for solving an ordinary differential equation. the proposed its architecture is very high speed and regular. this hardware proposed in this paper may be part of the mathematical problem solver's tool kit in the future and may be available to many applications in the engineering.

  • PDF

GEGENBAUER WAVELETS OPERATIONAL MATRIX METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • UR REHMAN, MUJEEB;SAEED, UMER
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1069-1096
    • /
    • 2015
  • In this article we introduce a numerical method, named Gegenbauer wavelets method, which is derived from conventional Gegenbauer polynomials, for solving fractional initial and boundary value problems. The operational matrices are derived and utilized to reduce the linear fractional differential equation to a system of algebraic equations. We perform the convergence analysis for the Gegenbauer wavelets method. We also combine Gegenbauer wavelets operational matrix method with quasilinearization technique for solving fractional nonlinear differential equation. Quasilinearization technique is used to discretize the nonlinear fractional ordinary differential equation and then the Gegenbauer wavelet method is applied to discretized fractional ordinary differential equations. In each iteration of quasilinearization technique, solution is updated by the Gegenbauer wavelet method. Numerical examples are provided to illustrate the efficiency and accuracy of the methods.

SINGULAR PERIODIC SOLUTIONS OF A CLASS OF ELASTODYNAMICS EQUATIONS

  • Yuan, Xuegang;Zhang, Yabo
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.501-515
    • /
    • 2009
  • A second order nonlinear ordinary differential equation is obtained by solving the initial-boundary value problem of a class of elas-todynamics equations, which models the radially symmetric motion of a incompressible hyper-elastic solid sphere under a suddenly applied surface tensile load. Some new conclusions are presented. All existence conditions of nonzero solutions of the ordinary differential equation, which describes cavity formation and motion in the interior of the sphere, are presented. It is proved that the differential equation has singular periodic solutions only when the surface tensile load exceeds a critical value, in this case, a cavity would form in the interior of the sphere and the motion of the cavity with time would present a class of singular periodic oscillations, otherwise, the sphere remains a solid one. To better understand the results obtained in this paper, the modified Varga material is considered simultaneously as an example, and numerical simulations are given.

  • PDF

SIMPLIFYING COEFFICIENTS IN A FAMILY OF ORDINARY DIFFERENTIAL EQUATIONS RELATED TO THE GENERATING FUNCTION OF THE MITTAG-LEFFLER POLYNOMIALS

  • Qi, Feng
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.417-423
    • /
    • 2019
  • In the paper, by virtue of the $Fa{\grave{a}}$ di Bruno formula, properties of the Bell polynomials of the second kind, and the Lah inversion formula, the author simplifies coefficients in a family of ordinary differential equations related to the generating function of the Mittag-Leffler polynomials.

NOTE OF BEHAVIOR OF A COUPLED NONAUTONOMOUS ORDINARY DIFFERENTIAL EQUATION

  • Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.227-230
    • /
    • 1995
  • Stability of a coupled nonautonomous ordinary differential equation is investigated. Asymptotic convergence to zero of a part of state vector is additionally shown, otherwise only uniform stability could have been concluded by the Lyapunov direct method. Obtained results could be particularly useful in analysis of nonautonomous systems in which the invariance principle does not hold. An illustrating example is given.

  • PDF

ERROR ANALYSIS OF FINITE ELEMENT APPROXIMATION OF A STEFAN PROBLEM WITH NONLINEAR FREE BOUNDARY CONDITION

  • Lee H.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.223-235
    • /
    • 2006
  • By applying the Landau-type transformation, we transform a Stefan problem with nonlinear free boundary condition into a system consisting of a parabolic equation and the ordinary differential equations. Fully discrete finite element method is developed to approximate the solution of a system of a parabolic equation and the ordinary differential equations. We derive optimal orders of convergence of fully discrete approximations in $L_2,\;H^1$ and $H^2$ normed spaces.