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SINGULAR PERIODIC SOLUTIONS OF A CLASS OF
ELASTODYNAMICS EQUATIONS

XUEGANG YUAN* AND YABO ZHANG

ABSTRACT. A second order nonlinear ordinary differential equation is ob-
tained by solving the initial-boundary value problem of a class of elas-
todynamics equations, which models the radially symmetric motion of a
incompressible hyper-elastic solid sphere under a suddenly applied surface
tensile load. Some new conclusions are presented. All existence conditions
of nonzero solutions of the ordinary differential equation, which describes
cavity formation and motion in the interior of the sphere, are presented. It
is proved that the differential equation has singular periodic solutions only
when the surface tensile load exceeds a critical value, in this case, a cavity
would form in the interior of the sphere and the motion of the cavity with
time would present a class of singular periodic oscillations, otherwise, the
sphere remains a solid one. To better understand the results obtained in
this paper, the modified Varga material is considered simultaneously as an
example, and numerical simulations are given.
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1. Introduction

In this paper, we are concerned with the radially symmetric motion of a solid
sphere, with the undeformed radius B, composed of an incompressible hyper-
elastic material. It is assumed that the sphere is subjected to a prescribed
uniform radial tensile load pg > 0 on its surface R = B at time ¢t = 0. In
spherical coordinates, the point (R, ©, ®) in the undeformed configuration moves
to the point (r, 0, ¢) at time ¢ > 0. Under the assumption of radially symmetric
deformation, the deformed configuration is given by

r=7(R,t)>0,0< R< B, r(0+,t) 20,0 =6,0 = ¢, (1)
where r(R, t) is the radially deformed function to be determined.
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The mathematical model that describes the radial motion of the incompress-
ible solid sphere under a prescribed uniform radial tensile load at its outer surface
is as follows,

do1(R,t) Or(R,t),_, 2 _ 0*r(R,1)
oEar )t rEp @B -y = e )
or(R,t)  R?
OR  712(R,t)’ ®)
r(R,0) = R, —8—’%’—0) = 0. (4)
r(0+,t)o1(0+,t) =0, t>0, (5)
o1(B,t) = po (r_(%) , t20. (6)

In this mathematical model, Eq.(2) is the equilibrium differential equation,
in the absence of body force, that describes the radially symmetric motion of
the solid sphere.

In Eq.(2), 01(R, t) and o2(R, t) are the radial and the circumference Cauchy
stresses and respectively given by

ow

o1(R,t) = /\18—/\1 —p(R,t), (7a)
w

02(R7 t) = )\287 _p(Rv t)» (7b)
2

in which W = W(A4, A2, A3) is the strain energy function associated with an
incompressible hyper-elastic material, and A;, Ay, A3 are the radial and the cir-
cumference stretches and respectively given by

or(R, 1) r(R,1)

A = 3R Ag = A3 = 7 (8)

and p(R,t) is the hydrostatic pressure, p is a constant mass density of the ma-
terial.

Obviously, Eq.(2) is a so-called nonlinear evolution equation.

Eq.(3) is obtained from the incompressibility constraint A\;A2A3 = 1 and
Eq.(8).

Eq.(4) is the initial conditions, i.e., the sphere is in an undeformed state and
at rest at time ¢t = 0.

Eq.(5) denotes that if no cavity forms in the interior of the solid sphere, we
have r(0+,t) = 0, if it is found that a cavity with radius r(0+,¢) = ¢ > 0 forms
in the sphere, then the condition for traction-free cavity surface o1(0+,t) = 0
must hold.

Eq.(6) is the boundary condition, namely, a prescribed load py is suddenly
applied and maintained at the surface of the sphere.

Interestingly, if the right hand of Eq.(2), i.e., the acceleration term, is set to
zero and Eq.(4) is not considered, then the above mathematical model describes
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the static deformation problems of a solid sphere under a prescribed uniform
radial tensile load that has been extensively examined by many authors.

The first investigation was contributed by Ball [1] in 1982, who founded a
mathematical model for the static deformation problems and formulated the
cavity formation and growth as a bifurcation problem. In recent years, many
significant works on the static bifurcation problem have been carried out, which
may be found in [2]- [7]. In particular, the qualitative properties of the static
problem for the modified Varga material was studied in [8] by using Singularity
Theory and Bifurcation Theory.

On the other hand, while the static problems in hyper-elastic materials are
well understood, the analogous dynamic problems are relatively unexplored due
to the strong nonlinearity of the governing equations.

The first investigation of the radial oscillation was undertaken by Knowles [9,
10]. He respectively considered a cylindrical tube and a spherical shell composed
of isotropic incompressible hyper-elastic materials, and reduced the equations of
motion to second order ordinary differential equations. Other investigations on
this aspect may be found in [11]-[15]. In particular, the mathematical model
that describes cavitation in nonlinear elastodynamics for homogeneous isotropic
neo-Hookean materials was first proposed by Chou-Wang and Horgan [16] in
1989, and it is pointed out that a cavity would form in the interior of the sphere
and the motion of the cavity with time would present a nonlinearly periodic
oscillation as the surface tensile load exceeds a critical value in their work. The
results of [16] are well generalized and some new results are obtained in this
work.

2. Solutions of the mathematical model
Integrating Eq.(3) with respect to R directly, we have
r=r(R,t)=[R*+ )], t>0, 9)

where ¢(t) > 0 is a integral constant to be determined. According to the rela-
tionship between r and R, for convenience, Eq.(9) is rewritten as

R=[r- c3(t)]1/3 , (10)
so that the principal stretches (8) can be rewritten as
3 2/3 3 -1/3
n=(1-%) )\2=/\3:(1——3 . (11)
r T

Note. In this case, the principal Cauchy stresses (7a, b), the principal stretches
(8) and the hydrostatic pressure p(R,t) are all functions of variable r.

Let

n=n(r,c)=(1- 03/1"3)_1/3, (12)

we have \y = 72, Ay = A3 = 7. Further, the strain energy function W =
W (A1, A2, A3) can be rewritten as W = W(n=2,n,7n).

I
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From Eq.(9), the initial conditions (4), which the cavity radius c(t) must
satisfy, become
c(0) =0, é0)=0. (13)

Note. In this paper, dots over all letters denote derivative with respect to ¢t.
Using Eq.(9), we also have
&?r(R,t)
92
Substituting Egs.(7a, b) and (14) into Eq.(2) yields

=2er7%(r® — 3)(&)? + Pr%e. (14)

o . ~ 2 ~ _
r [n™*W1(n 2,n,n)—p(T,t)]+; [0 2Wi(n~2,m,m)— nWa(n™2,m,m)]

= p[2er75(r% — 3)(&)* + Ar2E] . (15)
Integrating Eq.(15) with respect to r we obtain

v d
p(r,t) =0 2Wi(n~%,n,m) + 2 / [n7*Wi(n™2,n,m) —nWa(n~2,m,n)] f

42 c
—p(c,t)—p[(;?—f—i-g) (é)2+6(1—;)5} ) (16)
where in the integration, n = n(¢, ¢), and W;(n=2,n,7n) denotes the partial de-
rivative with respect to the ¢ — th variable.

For a prescribed incompressible hyper-elastic material (i.e. the corresponding
strain energy function is determined), under the surface tensile load po, we see
from Eq.(7a, b) that p(c,t) = —o1(c,t). Thus, if ¢(t) = 0, namely, no cavity
forms in the interior of the sphere, then r(R,t) = R. From Eq.(16) and the
boundary condition (5), we have p(0,t) = —po. On the other hand, if c(t) > 0,
i.e., a cavity forms, then from Eq.(5) we have p(c,t) =0,t > 0.

Remark. According to the normalization condition of the strain energy func-
tion, we have W1(1,1,1) = W5(1,1,1) = 0.

Multiplying both sides of Eq.(16) by r(0+, t), setting R = B and using Eq.(7a,
b), from the boundary conditions (5) and (6) we obtain

pe [c(1—§)6+(%—%+g) (c’)2] — epo (g)z

s
—2c / [0 Wr(n™%,m,m) = W (n"2, 1, m)] % =0, (17)
where ’
S =r(B,t) = (B® + c(t)?)'/3. (18)
Obviously, for any given py > 0, ¢(t) = 0 is a solution of Eq.(17), and thus
r(R,t)=R, p(r,t)=-po, t>0 (19)

are homogeneous solutions of the Eqs.(2) and (3). If it is found that there is
a value of ¢(t) > 0 that satisfies Eq.(17) and the initial conditions (13), then
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Egs.(9) and (16) are the nontrivial solutions of the Egs.(2) and (3) with the
initial and boundary conditions.

Interestingly, the quantity ¢(t) denotes the value of the cavity radius at time ¢,
where c(t) = 0 implies that the sphere remains solid in the current configuration.
If it is found that ¢(¢) > 0, then it implies that there is a cavity with radius
r(0+,t) = ¢(t) > 0 centered at the sphere in the current configuration at time .

Moreover, the second order nonlinear ordinary differential equation (17) pro-
vides a exact relationship between the prescribed load pg and the cavity radius
c(t) . We call Eq.(17) the motion equation of cavity.

In order to obtain the existence conditions of cavity formation in the interior
of the sphere, i.e., ¢(t) > 0, and the motion rule of the formed cavity, we will
study the qualitative properties of solutions of Eq.(17) with the initial conditions
(13).

3. Qualitative analyses of Eq.(17)

For convenience, we define the dimensionless cavity radius and its velocity by

x(t) = c(t)/B, (t)=¢(t)/B, (20)
and so the initial conditions (13) become
2(0) =0, #(0)=0. (21)
Let, s
_ _ _ d¢
h(z) = —2/ [ Wa(n ™2, m,m) — nWa(n ™2, n,m)] 3 (22)
and
W(n) =W(n 2 mn,mn), (23)
we have
: dw _ _ _
Wi(n) = dén) =2(=n*Wi(n~?, m,m) + Waln ™2, n,m)). (24)
From the relationship between 7 and &, Eq.(22) then becomes
= Wi (n)
h(z) = dn. 25
@[ (25)

According to the above notation, the motion equation of cavity (17) can be
rewritten as
x
B2x? (1 - — )i+
o0 (1= )

4
2 T _ 2z § 9 ~ 223
pB (2(1 T BB (1B T 2) @*+ah(z) —pox(l+2°) "7 =0, (26)

Obviously, z(t) = 0 is a trivial solution of Eq.(26). Furthermore, it is not difficult
to show that

d 3 zt 9 z? 2 3
— - — ) =2 - +2,
dz (1+23)1/3 2(1+ 2343 (1+23)1/3 2
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so multiplying both sides of Eq.(26) by x4 we obtain

d 2,3 T .2
Iz (pB z (1 —(1+$3)1/3) 7+

2 [ e (hie) - po 3—2/3d)=0. 27
| € (he - w1+ €72) ag (21)
On using the initial conditions (21), this yields

pB%z3 (1 — m) ¢2+2/0 £2h(£)dE — 2po ((1 + 2313 — 1) =0. (28)

However, from Eqgs.(26) and (28), we have the following expressions by setting
t— 0+, i.e.,

- 1/2 _
£(0+) =+ (——2(p %p BZ(O))> LE(0+) = p————°3p 52(0)7 (29)

that is so say, the first derivative of z(t) has a discontinuity at the initial moment
t = 0 (see (21)), and thus we can conclude that Eq.(26) is a singular second
order nonlinear differential equation with the initial condition z(0) = 0.

Next we will examine the dynamic behavior of Eq.(26). However, it is helpful
to consider first the static bifurcation of a solid sphere composed of an incom-
pressible hyper-elastic material under a prescribed uniform radial tensile load,
which will be referred to later when dynamic behavior is analyzed.

3.1. Static bifurcation

Interestingly, if the right hand of Eq.(2), i.e., the acceleration term is set
to zero and Eq.(4) is not considered, then the mathematical model! describes
the correspondingly static deformation problems. Using the similarly solving
process in Section 2 and the notations in the front part of this section, we obtain
an explicit function of the dimensionless cavity radius z and the suddenly applied
radial tensile load py, i.e.,

zh(z) — pez(1+ 23)~2/3 =0, (30)

where h(z) is given by Eq.(25). Eq.(30) can also be obtained by setting & = 0
and ¢ = 0 in Eq.(26), in which z is independent of time.

Obviously, one can see that, for any pg > 0, x = 0 is a trivial solution of
Eq.(30). However, it remains to be determined whether or not there exists
a nonzero value of z satisfying the following equation, which is obtained by
Eq.(30), i.e.,

po=(1+2° 2/3h($ = (1+23)2/3 Wi(n) dn. (31)
3
(1+z3)1/3 77 — 1
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The critical load p.,, which a cavity may be initiated at the center of the sphere,
is found by formally setting # — 0+ in Eq.(31), and so
= Wa(n)
Per = L P 1d77- (32)

The integral of Eq.(32) is improper, i.e., whether or not p., is finite, and thus
cavitation may or may not take place, in other words, depends strictly on the
concrete form of the strain energy function.

To insure pe, is finite, some conditions must be imposed on the strain energy
function W, as follows,

(i) d*W (n)/dn? must be finite as 7 — 1;

(ii) The highest power of W (n=2,7,n) with respect to 7 cannot exceed 3 for
large values of 7).

Remark. Eq.(32) was first given by Ball [1]. For many material models such
as the neo-Hookean material, the Gent-Thomas material, the Valanis-Landel
material, the modified Varga material, and so on, p,, is finite. However, for the
Mooney-Rivlin material, p., is not finite. These results may be found in [2],
[31,[5], [8]-

Throughout this paper, we assume that the strain energy function W(n=2, n,n)
satisfies the conditions (i) and (ii).

From Eq.(30) one can see that there exists a unique bifurcation point (0, pe,)
on the trivial solution ¢ = 0 if p,, is finite. We now study the local properties
of Eq.(30) at the bifurcation point (0,p..) by analyzing the curve py = po(z),
given by Eq.(31), for small values of z.

The Taylor expansion of Eq.(31) at z = 0 is as follows,

Po = Per + kz® + 0 (2%), (33)
where
-
k= 2 DPer — ld W(l) . (34)
3 6 dn?

Interestingly, we see from Eq.(33) that the nontrivial solution bifurcates locally
to the left (supercritical) if & > 0 and bifurcates locally to the right (subcritical)
if k < 0. See also [3], [8]. However, it is not difficult to show that py — oo as
x — oo, this means that there also exists a secondary turning bifurcation point
on the nontrivial solution.

Correspondingly, a cavity would form in the interior of the sphere as the
surface tensile load py exceeds the critical load pe,..

Remark. For different material models, the local properties of Eq.(30) at the
bifurcation point (0, p.-) are quite different. Detail results may be found in [3],
[61, [7], [8].

To better understand the above results, in this paper we consider the modified
Varga materials an example. The corresponding strain energy function is given
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WA, A2, A3) = g + A+ A3+ A7+ 05+ 5 -6+

a(h —1)% + B\ — 1)7],

where p, o, 8 are material parameters. The detail conclusions on static bifurca-
tion of the modified Varga materials may be found in [8]. Example curves, po/u
vs z, are shown in Figs.1 and 2 for different material parameters.

2.54

m Bifurcation point
2.0

a=0.5,p=1.5

1.5
x 1.0
0.5

0.0 - -

1 2 3 4 5 6

P/

Fig.1. Example curves, po/u vs x, bifurcate locally to the right for the modified
Varga materials.

e Secondary tuming bifurcation point
154 a Bifurcation point
1.0
x
0.5
0.0
25 3.0 35 4.0 45

P,/

Fig.2. Example curves, po/p vs z, bifurcate locally to the left for the modified Varga
materials.

3.2. Dynamic behaviors
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For the convenience of studying the dynamic behaviors of Eq.(28), i.e., Eq.(26),
let

Vi) =2 [ @herde —2p0 (1459 -1) (35)

We see from Eq.(28) that if there exists € (0, +00) such that the inequality
V(z,po) < 0 holds, the existence conditions and the range of nonzero solutions
of Eq.(28) are then determined, since the first term without #2? in Eq.(28) is
positive as z > 0. Furthermore, we can obtain the nonzero solutions of Eq.(26)
with the initial conditions (21).

From Eqgs.(30), (31) and (35), we see that the value of z which satisfies the
inequality V(z, po) < 0, depends not only on the prescribed surface tensile load
po > 0, but also on the strain energy function of the hyper-elastic material.

From the following equation

Vx(iﬂ,po) = .T2 (h(gj) —Po(l + IE3)_2/3>

(

1+4+z3)1/3 773 -1
we know that, in fact, the nonzero critical points of V,(x, pg) are nonzero solu-
tions of Eq.(31).

For strain energy functions corresponding to the hyper-elastic materials, the
strongly elliptic condition, i.e., d?W(n)/dn? > 0, must be satisfied (cf. Ball
[1] pp.563, (3.7)). When py = 0, we have I£%1+ V(z,0) = zl_iglJ(V,(@O) =0
and zlillgo V(x,0) = zlLHgo Vz(z,0) = oo, moreover, V(z,0) is a strictly increasing
function of z.

Thus, for the given py > 0, from zl—i>%1+ V{(z,po) = 0, we see that V(z,pg) <0
isequivalent to min V(z,py) < 0. It is easy to show that lim V(z,pg) = oo,
2€(0,+00) T-500

and thus V{(z, po) has no maximum.

According to the continuous dependence of V (z, py) with respect to z, for the
given pg > 0, we first determine the nonzero critical point of V(z, pg) by solving
the equation V;(x,pp) = 0, and then discuss whether the critical point is an
extreme point or an inflexion point.

To discuss the variation of V(z,pg) with respect to py, we examine the rela-
tionship between z and py.

From the above analyses on Eq.(30), we know that V(z, pg) has no extreme
value as x € (0,+00) for sufficiently small values of pyg, that is to say, for any
r € (0,+00), we have V(z,pp) > 0, and so Eq.(28) (i.e., Eq.(26)) has only a
zero solution. From the expression of V{(x,pp), it is not difficult to see that the
value of V(x, po) decreases gradually along with the increasing values of py. But
as the value of py attains a certain value, the property of V(z,pp) may have a
change. Assume that pg increases and attains a certain value such that V(z, po)
has a nonzero critical point. We will consider the following two possible cases:
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(a) The nontrivial solution of Eq.(30) bifurcates locally to the right, see the
example curves shown in Fig.1.

In this case, only when pg > per, V(z,po) has a nonzero critical point and it
is an extreme point, written as (Z,pg). However, (Z,po) must be the minimum
point of V{(x,pg). Since zl_i>%1+ V(x,po) = 0, we have V(Z,po) < 0, and Eq.(28)

has a nonzero solution, furthermore, this solution is also a solution of Eq.(26)
because it satisfies the initial conditions (21). The critical tensile load, which
corresponds to the appearance of nonzero minimum of V(z, pg) (in other words,
the limit state that a cavity forms in the sphere), is given by Eq.(32).

(1.0,-0.077)
-0.2 T T T T

0.0 0.3 0.6 0.9 1.2

Fig.3. Relation curves, V vs z, for different values of pg and for « = 1,38 = 0.5.

0.8 1
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0.4

0.2+

0.0 (x,,0¥(1.31,0)

(o/w) "By

0.2
041

0.6

-0.8 T T T T 1

Fig.4. Phase diagram of Eq.(26) satisfying the initial conditions (21) for the
modifired Varga material (« = 1,8 = 0.5,y = Z).
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As po increases gradually, the minimum of V(x, py) becomes small and small,
that is to say, the range of the nonzero solution of Eq.(28) extends more and
more.

Further, as the prescribed py exceeds p.., assume that V(z,po) takes the
minimum at Z (nonzero), from V(&,py) < 0 and zl:r{)lo V{z,po) = +o0, we can

conclude that there exists a nonzero value of z € (#,+oc), written as z,,, so
that V(2m,p0) = 0. Note that z,, is the maximum of the nonzero solution of
Eq.(26) for the corresponding value of py.

For the modified Varga materials, example curves, V(z,po) vs z, are shown
in Fig.3 as po takes different values. Phase diagram of Eq.(26) satisfying the
initial conditions (21) are shown in Fig.4.

(b) The nontrivial solution of Eq.(30) bifurcates locally to the left, see the
example curves shown in Fig.2.

In this case, there exists a critical value of py corresponding to the secondary
turning bifurcation point, written as p,, such that V(x, po) has a nonzero critical
point and it is an inflexion point as pg = p,,. However, as the value of py exceeds
Dn, the inflexion point splits into a local maximum Z; and a local minimum Z
of V(z,po), in which z; > Z3 (note that the two local extreme points all vary
with pg).

We can conclude that the values of V(z,pg) at the two local extreme points
must be greater than zero, because its value at the inflexion point is positive. If
Po increases continuously, the local maximum and the local minimum all decrease
gradually. As po attains a certain value (written as p,), the local minimum of
V(x, po) is zero.

0.010 -
- P /u=0

A p/u=3.8191 ;

0.005 1

0.000 £

Fig.5. Relation curves, V vs x, for different values of po and for o« = 2,8 = 1.

If po increases more, the local minimum of V' (z, py) is negative and turns into
the global minimum at Zs, moreover, the local maximum is still positive, and
it closes to the origin gradually. Although Eq.(28) has nonzero solution at the
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moment, we say that this solution is not a solution of Eq.(26), because it does
not satisfy the initial conditions (21). As pp increases more and more, the local
minimum (i.e., the global minimum at the moment) of V' (x, po) decreases contin-
uously, moreover, the local maximum closes to the origin unceasingly and reaches
to it ultimately, the corresponding tensile load is p., (the same as Eq.(32)), such
that Eq.(28) has a nonzero solution. Since this solution satisfies the initial con-
ditions (21) as pp > per , it is also a nonzero solution of Eq.(26) in this case.

For the modified Varga materials, example curves, V(z,pg) vs z, are shown
in Figs.5 and 6 as po takes different values. Phase diagram of Eq.(26) satisfying
the initial conditions (21) are shown in Fig.7.

0.00

-0.04

-0.08

-0.12

-0.16 1

(1.3,-0.1717)
-0.20 T T y

00 03 06 09 12 15 18
X

Fig.6. Relation curves, V' vs z, for different values of po and for o« = 2,3 = 1.

(o/w)"“By
[=]
o

091
0.0 0.4 0.8 1.2 1.6 2.0

Fig.7. Phase diagrams of Eq.(26) satisfying the initial conditions (21) for the
modifired Varga material (o = 2,8 =1,y = ).
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In sum, from the properties of Eq.(28) and the above analyses, we know that
Eq.(26) has nonzero solutions z(t) (namely, dimensionless cavity radius) only
when pg > per. As shown in Figs.4 and 7, we can see that the solution z(¢) begins
increasing with respect to time from the initial value z(0) = 0 at the initial time
t = 0, and that the increasing velocity of cavity radius %(t) reaches directly to

1/2
(%) given by Eq.(29) from %(0) = 0; as the solution x(t) increases

and reaches to the maximum ,, at time ¢ = T/2, where T can be obtained
by Eq.(28) implicitly, the increasing velocity of cavity radius decreases to zero;
thereafter, z(t) decreases gradually, but the decreasing velocity of cavity radius
begins increasing, and then decreasing, as z(t) decreases to zero, &(t) is z(T~) =

1/2
— (W) also given by (29). As time increases continuously, the nonzero

solution of Eq.(26) will repeat this cycle. In view of the first derivative of z(t)
has a discontinuity at the initial moment ¢ = 0, thus we can say that the nonzero
solution of Eq.(26) with the initial conditions (21) must be a singular periodic
solution of time, in other words, when the prescribed load py exceeds p., given
by Eq.(32), a cavity forms in the interior of the sphere, and that the motion of
the formed cavity with respect to time is a class of singular nonlinear periodic
oscillations. The oscillation center is T that satisfies Eq.(31) for the given py >
Per, T is called a period of nonlinear oscillation.

Interestingly, the phase diagrams of Eq.(26) are quite different as the non-

trivial solution of Eq.(30) bifurcates locally to the right or to the left. If the
nontrivial solution of Eq.(30) bifurcates locally to the right, Eq.(26) has only
zero solution as py = p.,, in other word, no cavity forms in the interior of the
sphere, and the sphere is in the critical state of cavity formation; while if the
nontrivial solution of Eq.(30) bifurcates locally to the left, Eq.(26) has a non-
singular periodic solution as pg = p,., that is to say, a cavity has formed in the
sphere and then presented a classical nonlinear periodic oscillation.
Remark. It is worth pointing out here that the conclusions obtained in this
paper are similar to those for other incompressible hyper-elastic materials such
as the neo-Hookean material, the Gent-Thomas material, the Valanis-Landel
material and so on.

4. Conclusions

In this paper, a mathematical model that describes the radially symmetric
motion problem of an incompressible hyper-elastic solid sphere is reduced to a
second order nonlinear ordinary differential equation, which describes cavity for-
mation and motion in the interior of the sphere. Firstly, the conditions of static
bifurcation are presented. Secondly, it is proved that the differential equation
has singular periodic solutions only when py > pe, namely, a cavity forms in
the interior of the sphere and the motion of the cavity with time presents a class
of singular periodic oscillations only when pg > p.,, as shown in Figs.4 and 7.
However, as the surface tensile load is exactly equal to a certain critical value, it
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is also proved that the differential equation has only zero solution if the nontriv-
ial solution of the static bifurcation equation bifurcate locally to the right and
has periodic solutions if the nontrivial solution of the static bifurcation equation
bifurcate locally to the left. To better understand the results obtained in this
paper, the modified Varga material is considered, and numerical simulations are
given.
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