MULTIPLICITY OF PERIODIC SOLUTIONS FOR SECOND ORDER NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS*

Wan Se Kim

Abstract

Multiplicity of nonlinear second order nonlinear ordinary differential equations will be discussed

1. Introduction

Let R be the set of all real numbers. By $C^{k}[0,2 \pi]$ we denote the Banach space of 2π-periodic continuous functions $x:[0,2 \pi] \rightarrow R$ whose derivatives up to order k are continuous. The norm is given by

$$
\|x\|_{C^{k}}=\sum_{i=1}^{k}\left\|x^{(i)}\right\|_{\infty}
$$

where $\|y\|_{\infty}=\sup _{t \in[0,2 \pi]}|y(t)|$, the norm in $C^{0}[0,2 \pi]$.
For multiplicity results of periodic solutions of Lienard equations, we may see in Hirano and kim[2], and Kim[3]. In this note, we will study the multiple existence of solutions to the problem

$$
\begin{equation*}
x^{\prime \prime}(t)+h\left(t, x(t), x^{\prime}(t)\right)+g(t, x(t))=e(t), \tag{E}
\end{equation*}
$$

$$
\begin{equation*}
x(0)-x(2 \pi)=x^{\prime}(0)-x^{\prime}(2 \pi)=0, \tag{B}
\end{equation*}
$$

where $h:[0,2 \pi] \times R \times R \rightarrow R$ is continuous and satisfies Nagumo-type condition, and $g:[0,2 \pi] \times R \rightarrow R$ and $e:[0,2 \pi] \rightarrow R$ are continuous functions.

The proof of our result is based on upper-lower solution method and coincidence degree theory.

1991 Mathematics Subject Classification. 34A34, 34b15, 34c25.
Key words and phrases. existence, multiplicity,nonlinear, ordinary differential equation.
This work was supported by Hanyang University, Korea, made in the program year of 2000

Assume

$$
h(t, x, 0)=0
$$

for every $(t, x) \in[0,2 \pi] \times R$ and that there exists some $T>0$ such that

$$
g(t, x+T)=g(t, x)
$$

for every $(t, x) \in[0,2 \pi] \times R$.
We will say that h in problem (E)(B) satisfies Nagumo-type condition on $[r, s]$ if there exists a constant $C>0$ such that for each $\lambda \in[0,1]$ and each possible solution of

$$
\begin{gather*}
x^{\prime \prime}(t)+\lambda h\left(t, x(t), x^{\prime}(t)\right)+\lambda g(t, x(t))=\lambda e(t) \\
x(0)-x(2 \pi)=x^{\prime}(0)-x^{\prime}(2 \pi)=0 \tag{B}
\end{gather*}
$$

satisfying $r \leq x(t) \leq s, t \in[0,2 \pi]$, we have

$$
\left\|x^{\prime}\right\|_{\infty}<C .
$$

Examples of admissible h are the following ones:

1) h depends only on $x^{\prime}($ see $[4])$;
2) $|h(t, x, y)| \leq \gamma(|y|)$ for $(t, x, y) \in[0,2 \pi] \times[r, s] \times R$ where γ is positive, continuous and such that

$$
\int_{0}^{\infty} \frac{s d s}{\gamma(s)}=+\infty
$$

(see [1]).
Our result contains more general result than that of [6]. Now we have the following

Main Result

THEOREM. Assume, besides the above conditions on h and g there exists there exists real numbers $r_{1}, r_{2}, s_{1}, s_{2}$ with $r_{1}<s_{2}<r_{2}<s_{1}$ and $0<s_{1}-r_{1}<T$ such that

$$
g\left(s_{1}\right) \leq g\left(s_{2}\right), \quad g\left(r_{2}\right) \leq g\left(r_{1}\right)
$$

and h satisfies Nagumo type condition on $\left[s_{1}-T, s\right]$. Then $(E)(B)$ has at least one solution if, for all $t \in[0,2 \pi]$,

$$
\begin{equation*}
g\left(t, s_{1}\right) \leq e(t) \leq g\left(t, r_{1}\right) \tag{1}
\end{equation*}
$$

and $(E)(B)$ has at least two solutions not differing by a multiple of T if, for all $t \in[0,2 \pi]$,

$$
\begin{equation*}
g\left(t, s_{1}\right)<g\left(t, s_{2}\right) \leq e(t) \leq g\left(t, r_{2}\right)<g\left(t, r_{1}\right), \tag{2}
\end{equation*}
$$

and $(E)(B)$ has at least four solutions not differing by a multiple of T if strict inequalities holds in $\left(I_{2}\right)$.

Proof. Suppose (I_{1}). Then, for all $t \in[0,2 \pi]$, we have

$$
\begin{gathered}
e(t)-g\left(t, r_{1}+k T\right)-h\left(t, r_{1}+k T, 0\right)=e(t)-g\left(t, r_{1}\right) \leq 0 \\
e(t)-g\left(t, s_{1}+j T\right)-h(t, s+j T, 0)=e(t)-g\left(t, s_{1}\right) \geq 0
\end{gathered}
$$

with strict inequalities if they hold in $\left(I_{1}\right)$. Hence, by Mawhin's classical results(see [1]), there exists, by taking $k=j=0$, at least one solution $x_{1}(t)$ of (E)(B) such that $r_{1} \leq x(t) \leq s_{1}$.

Now, suppose the strict inequalities holds; i.e., for all $t \in[0,2 \pi]$,

$$
\begin{equation*}
g\left(t, s_{1}\right)<e(t)<g\left(t, r_{1}\right) . \tag{1}
\end{equation*}
$$

If we define

$$
\begin{aligned}
L: D(L) \subseteq C^{1}[0,2 \pi] & \longrightarrow C^{0}[0,2 \pi], \\
x & \longmapsto x^{\prime \prime}
\end{aligned}
$$

where $D(L)=C^{2}[0,2 \pi]$ and

$$
\begin{aligned}
N: C^{1}[0,2 \pi] & \longrightarrow C^{0}[0,2 \pi] . \\
x & \longmapsto x^{\prime \prime}
\end{aligned}
$$

Then L is a Fredholm mapping of index zero and N is L-completely continuous.
Let

$$
\Omega_{k, j}=\left\{x \in C^{1}[0,2 \pi] \mid r_{1}+k T<x(t)<s_{1}+j T \text { for } t \in[0,2 \pi] \text { and }\left\|x^{\prime}\right\|_{\infty}<C\right\} .
$$

Then the boundary value problem (E^{\prime})(B) becomes

$$
L x-\lambda N x=0, \quad \lambda \in[0,1]
$$

and when the strict inequalities hold in $\left(I_{1}\right)$, the following coincidence degree exist and have the corresponding values, where d_{B} denotes the Brouwer degree, and

$$
\begin{gathered}
D_{L}\left(L-N, \Omega_{0,0}\right)=d_{B}\left(\Gamma,\left(r_{1}, s_{1}\right), 0\right)=+1, \\
D_{L}\left(L-N, \Omega_{-1,-1}\right)=d_{B}\left(\Gamma,\left(r_{1}-T, s_{1}-T\right), 0\right)=+1,
\end{gathered}
$$

$$
D_{L}\left(L-N, \Omega_{-1,0}\right)=d_{B}\left(\Gamma,\left(r_{1}-T, s_{1}\right), 0\right)=+1
$$

where $(\Gamma u)(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi}[e(t)-g(t, u(t))] d t$. But

$$
\Omega_{0,0} \cap \Omega_{-1,-1}=\emptyset
$$

and

$$
\Omega_{0,0} \subseteq \Omega_{-1,0}, \quad \Omega_{-1,-1} \subseteq \Omega_{-1,0}
$$

So that the excision property of degree implies

$$
\begin{aligned}
1=D_{L}\left(L-N, \Omega_{-1,0}\right)= & D_{L}\left(L-N, \Omega_{-1,-1}, 0\right) \\
& +D_{L}\left(L-N, \Omega_{0,0}, 0\right) \\
& +D_{L}\left(L-N, \Omega_{-1,0} \backslash\left(\bar{\Omega}_{-1,-1} \cup \bar{\Omega}_{0,0}\right)\right) \\
= & 2+D_{L}\left(L-N, \Omega_{-1,0} \backslash\left(\bar{\Omega}_{-1,-1} \cup \bar{\Omega}_{0,0}\right)\right)
\end{aligned}
$$

Hence,

$$
D_{L}\left(L-N, \Omega_{-1,0} \backslash\left(\bar{\Omega}_{-1,-1} \cup \bar{\Omega}_{0,0}\right)\right)=-1
$$

Hence, there exists a solution x_{2} such that, for all $t \in[0,2 \pi], r_{1}-T<x_{2}(t)<$ $s_{1}, x_{2}(\tau)>s_{1}-T$ for some $\tau \in[0,2 \pi]$ and $x_{2}\left(\tau^{\prime}\right)<r_{1}$ for some $\tau^{\prime} \in[0,2 \pi]$.

Consequently, this solution cannot differ from the one in $\Omega_{0,0}$ by a multiple of T. Hence $(\mathrm{E})(\mathrm{B})$ has at least two solutions not differing by a multiple of T if $\left(I_{1}^{\prime}\right)$ holds.

Now, suppose $\left(I_{2}\right)$. Then, for all $t \in[0,2 \pi]$, we have

$$
\begin{aligned}
& e(t)-g\left(t, s_{1}\right)-h\left(t, s_{1}, 0\right)=e(t)-g\left(t, s_{1}\right)>0 \\
& e(t)-g\left(t, r_{2}\right)-h\left(t, r_{2}, 0\right)=e(t)-g\left(t, r_{2}\right) \leq 0
\end{aligned}
$$

Hence, there exists at least one solution $x_{1}(t)$ of $(\mathrm{E})(\mathrm{B})$ such that $r_{2} \leq x_{1}(t) \leq s_{1}$ for all $t \in[0,2 \pi]$. Again, for all $t \in[0,2 \pi]$, we have

$$
\begin{aligned}
& e(t)-g\left(t, s_{2}\right)-h\left(t, s_{2}, 0\right)=e(t)-g\left(t, s_{2}\right) \geq 0 \\
& e(t)-g\left(t, r_{1}\right)-h\left(t, r_{1}, 0\right)=e(t)-g\left(t, r_{1}\right)<0
\end{aligned}
$$

Therefore, there exists at least one solution $x_{2}(t)$ of $(\mathrm{E})(\mathrm{B})$ such that $r_{1} \leq x_{2}(t) \leq s_{2}$ for all $t \in[0,2 \pi]$. Since $r_{1}<s_{2}<r_{2}<s_{1}$, two solutions are different and moreover two solutions can not differ from by a multiple of T because $0<s_{1}-r_{1}<T$. Since $g\left(t, s_{1}\right)<e(t)<g\left(t, r_{1}\right)$, as we did by the coincidence degree, we have a solution x_{3} such that, for all $t \in[0,2 \pi], r_{1}-T<x_{3}(t)<s_{1}, x_{3}(\tau)>s_{1}-T$ for some $\tau \in[0,2 \pi]$ and hence $x_{3}(\tau)>s_{2}-T$, and $x_{3}\left(\tau^{\prime}\right)<r_{1}$ for some $\tau^{\prime} \in[0,2 \pi]$ and hence $x_{3}\left(\tau^{\prime}\right)<r_{2}$. Therefore the third solution can not differ from x_{1}, x_{2} in $\Omega_{0,0}$ by a multiple of T.

Consequently, there exist at least three solutions of (E)(B) not differing by a multiple of T.

Now, suppose the strict inequalities hold;i.e., for all $t \in[0,2 \pi]$,

$$
\begin{equation*}
g\left(t, s_{1}\right)<g\left(t, s_{2}\right)<e(t)<g\left(t, r_{2}\right)<g\left(t, r_{1}\right) . \tag{2}
\end{equation*}
$$

Note that, for all $t \in[0,2 \pi]$, we have

$$
\begin{gathered}
e(t)-g\left(t, s_{i}+k T\right)-h\left(t, s_{i}+k T, 0\right)=e(t)-g\left(t, s_{i}\right)>0, \\
e(t)-g\left(t, r_{i}+j T\right)-h\left(t, r_{i}+j T, 0\right)=e(t)-g\left(t, r_{i}\right)<0, \quad i=1,2 .
\end{gathered}
$$

Then clearly (E)(B) has three solutions $x_{1}(t), x_{2}(t)$ and $x_{3}(t)$ such that $r_{1} \leq x_{1}(t) \leq$ $s_{2}, s_{2} \leq x_{2}(t) \leq r_{2}$ and $r_{2} \leq x_{3}(t) \leq s_{1}$, for all $t \in[0,2 \pi]$, and they are distinct and each of them are not differing by a multiple of T. For our fourth solution. Let

$$
\begin{aligned}
\Omega_{k, J}^{<i, j>} & =\left\{x \in C^{1}[0,2 \pi] \mid r_{i}+k T<x(t)<s_{j}+j T, t \in[0,2 \pi],\left\|x^{\prime}\right\|_{\infty}<C\right\}, \\
\Omega_{k, J}^{[i, j]} & =\left\{x \in C^{1}[0,2 \pi] \mid s_{i}+k T<x(t)<r_{j}+j T, t \in[0,2 \pi],\left\|x^{\prime}\right\|_{\infty}<C\right\}
\end{aligned}
$$

($k \leq 1$), where C is constant given by Nagumo condition. But $\Omega_{1}=\Omega_{-1,-1}^{<1,2>}, \Omega_{2}=$ $\Omega_{-1,-1}^{[2,2]}, \Omega_{3}=\Omega_{-1,-1}^{<2,1>}, \Omega_{4}=\Omega_{0,0}^{<1,2>}, \Omega_{5}=\Omega_{0,0}^{[2,2]}, \Omega_{6}={ }_{0,0}^{<2,1>}$ are mutually disjoint subset of $\Omega_{-1,0}^{<1,1>}$ and

$$
\begin{gathered}
D_{L}\left(L-N, \Omega_{-1,0}^{<1,1>}\right)=d_{B}\left(\Gamma,\left(r_{1}-T, s_{1}\right), 0\right)=+1, \\
D_{L}\left(L-N, \Omega_{1}\right)=d_{B}\left(\Gamma,\left(r_{1}-T, s_{2}-T\right), 0\right)=+1, \\
D_{L}\left(L-N, \Omega_{2}\right)=d_{B}\left(\Gamma,\left(s_{2}-T, r_{2}-T\right), 0\right)=-1, \\
D_{L}\left(L-N, \Omega_{3}\right)=d_{B}\left(\Gamma,\left(r_{2}-T, s_{1}-T\right), 0\right)=+1, \\
\quad D_{L}\left(L-N, \Omega_{4}\right)=d_{B}\left(\Gamma,\left(r_{1}, s_{2}\right), 0\right)=+1, \\
D_{L}\left(L-N, \Omega_{5}\right)=d_{B}\left(\Gamma,\left(s_{2}, r_{2}\right), 0\right)=-1, \\
D_{L}\left(L-N, \Omega_{6}\right)=d_{B}\left(\Gamma,\left(r_{2}, s_{1}\right), 0\right)=+1 .
\end{gathered}
$$

Hence, by the excision property of degree,

$$
1=D_{L}\left(L-N, \Omega_{-1,0}^{<1,1>}\right)=2+D_{L}\left(L-N, \Omega_{-1,0}^{<1,1>} \backslash \cup_{1 \leq i \leq 6} \bar{\Omega}_{i}\right)
$$

Therefore

$$
D_{L}\left(L-N, \Omega_{-1,0}^{<1,1>} \backslash \cup_{1 \leq i \leq 6} \bar{\Omega}_{i}\right)=-1 .
$$

Consequently, (E)(B) has a solution x_{4} in $\Omega_{-1,0}^{<1,1>} \backslash \cup_{1 \leq i \leq 6} \bar{\Omega}_{i} ;$ i.e., a solution such that $r_{1}-T<x(t)<s_{1}$ for all $t \in[0,2 \pi], x_{4}\left(\tau_{1}\right)>s_{2}-T, x_{4}\left(\tau_{2}\right)<s_{2}-T, x_{4}\left(\tau_{3}\right)>$ $r_{2}-T, x_{4}\left(\tau_{4}\right)<r_{2}-T, x_{4}\left(\tau_{5}\right)>s_{1}-T, x_{4}\left(\tau_{6}\right)<r_{1}, x_{4}\left(\tau_{7}\right)>s_{2}, x_{4}\left(\tau_{8}\right)<s_{2}, x_{4}\left(\tau_{9}\right)<$ $r_{2}, x_{4}\left(\tau_{10}\right)>r_{2}$ for some $\tau_{1}, \tau_{2}, \cdots, \tau_{10} \in[0,2 \pi]$. Thus this solution x_{4} can not differ from x_{1}, x_{2}, x_{3} by a multiple of T.

EXAMPLE. Suppose h is a function satisfying the assumption above and Nagumo condition on $\left[r_{1}-2 \pi, 2 \pi-r_{1}\right]$ where r_{1} is the point at which $a \sin x+b \sin 2 x$ has its maximum value. Let $r_{2} \in[0,2 \pi]$ be a point at which $a \sin x+b \sin 2 x$ has it lelative maximum such that $g\left(r_{2}\right)<g\left(r_{1}\right)$. Then the boundary value problem

$$
\begin{gathered}
x^{\prime \prime}(t)+h\left(t, x(t), x^{\prime}(t)\right)+[a \sin x+b \sin 2 x]=e(t) \\
x(0)-x(2 \pi)=x^{\prime}(0)-x^{\prime}(2 \pi)=0
\end{gathered}
$$

has at least one solution if $\|e\|_{\infty} \leq a \sin r_{1}+b \sin 2 r_{1}$, at least two solutions not differing by a multiple of 2π if $\|e\|_{\infty}<a \sin r_{1}+b \sin 2 r_{1}$, at least three solutions not differing by a multiple of 2π if $\|e\|_{\infty} \leq a \sin r_{2}+b \sin 2 r_{2}$ and at least four solutions not differing by a multiple of 2π if $\|e\|_{\infty}<a \sin r_{2}+b \sin 2 r_{2}$.

References

[1] R. E. Gains and J. Mawhin, Coindience degree and nonlinear differential equations, Lecture Note in Math. Springer, Berlin 568, (1977).
[2] N. Hirano and W. S. Kim, Multiple existence of periodic solutions for Lienard system, Differential and Integral Equations, 8(7), (1995), 1805-1811.
[3] W. S. Kim, Existence of periodic solutions for nonlinear Lienard system, Internat. J. Math. Math. Sci., 18(2), (1995), 265-272.
[4] J. Mawhin, Boundary value problem for nonlinear second order vecter differential equations, J. Diff. Eq., 16, (1974), 257-269.
[5] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conferences in Mathematics, Amer. Math. Soc., Providence R.I.,40, (1979).
[6] J. Mawhin and M. Willem, Multiple solution of periodic boundary value problem for some forced pendulum-type equations, J. Diff. Eq., 52(2), (1984), 264-287.

Department of Mathematics
Hanyang University
Seoul 133-791, Korea
e-mail:wanskim@email.hanyang.ac.kr

