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MULTIPLICITY OF PERIODIC SOLUTIONS FOR SECOND

ORDER NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS*

Wan Se Kim

Abstract. Multiplicity of nonlinear second order nonlinear ordinary differential equa-
tions will be discussed

1. INTRODUCTION

Let R be the set of all real numbers. By Ck[0, 2π] we denote the Banach space of
2π-periodic continuous functions x : [0, 2π] → R whose derivatives up to order k are
continuous. The norm is given by

‖x‖Ck =
k∑

i=1

‖x(i)‖∞,

where ‖y‖∞ = supt∈[0,2π] |y(t)|, the norm in C0[0, 2π].

For multiplicity results of periodic solutions of Lienard equations, we may see in
Hirano and kim[2], and Kim[3]. In this note, we will study the multiple existence of
solutions to the problem

(E) x′′(t) + h(t, x(t), x′(t)) + g(t, x(t)) = e(t),

(B) x(0)− x(2π) = x′(0)− x′(2π) = 0,

where h : [0, 2π]×R×R → R is continuous and satisfies Nagumo-type condition, and
g : [0, 2π]×R → R and e : [0, 2π] → R are continuous functions.

The proof of our result is based on upper-lower solution method and coincidence
degree theory.
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Assume
h(t, x, 0) = 0

for every (t, x) ∈ [0, 2π]×R and that there exists some T > 0 such that

g(t, x + T ) = g(t, x)

for every (t, x) ∈ [0, 2π]×R.
We will say that h in problem (E)(B) satisfies Nagumo-type condition on [r, s] if

there exists a constant C > 0 such that for each λ ∈ [0, 1] and each possible solution of

(E′) x′′(t) + λh(t, x(t), x′(t)) + λg(t, x(t)) = λe(t),

(B) x(0)− x(2π) = x′(0)− x′(2π) = 0

satisfying r ≤ x(t) ≤ s, t ∈ [0, 2π], we have

‖x′‖∞ < C.

Examples of admissible h are the following ones:
1) h depends only on x′(see[4]);
2) |h(t, x, y)| ≤ γ(|y|) for (t, x, y) ∈ [0, 2π]× [r, s]×R where γ is positive, continuous

and such that ∫ ∞

0

sds

γ(s)
= +∞,

(see [1]).
Our result contains more general result than that of [6]. Now we have the following

Main Result

THEOREM. Assume, besides the above conditions on h and g there exists there
exists real numbers r1, r2, s1, s2 with r1 < s2 < r2 < s1 and 0 < s1 − r1 < T such that

g(s1) ≤ g(s2), g(r2) ≤ g(r1)

and h satisfies Nagumo type condition on [s1 − T, s]. Then (E)(B) has at least one
solution if, for all t ∈ [0, 2π],

(I1) g(t, s1) ≤ e(t) ≤ g(t, r1),
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and (E)(B) has at least two solutions not differing by a multiple of T if, for all t ∈ [0, 2π],

(I2) g(t, s1) < g(t, s2) ≤ e(t) ≤ g(t, r2) < g(t, r1),

and (E)(B) has at least four solutions not differing by a multiple of T if strict inequal-
ities holds in (I2).

Proof. Suppose (I1). Then, for all t ∈ [0, 2π], we have

e(t)− g(t, r1 + kT )− h(t, r1 + kT, 0) = e(t)− g(t, r1) ≤ 0,

e(t)− g(t, s1 + jT )− h(t, s + jT, 0) = e(t)− g(t, s1) ≥ 0

with strict inequalities if they hold in (I1). Hence, by Mawhin’s classical results(see
[1]), there exists, by taking k = j = 0, at least one solution x1(t) of (E)(B) such that
r1 ≤ x(t) ≤ s1.

Now, suppose the strict inequalities holds; i.e., for all t ∈ [0, 2π],

(I ′1) g(t, s1) < e(t) < g(t, r1).

If we define
L : D(L) ⊆C1[0, 2π] −→ C0[0, 2π],

x 7−→ x′′

where D(L) = C2[0, 2π] and

N : C1[0,2π] −→ C0[0, 2π].

x 7−→ x′′

Then L is a Fredholm mapping of index zero and N is L-completely continuous.
Let

Ωk,j = {x ∈ C1[0, 2π]| r1 + kT < x(t) < s1 + jT for t ∈ [0, 2π] and ‖x′‖∞ < C}.

Then the boundary value problem (E’)(B) becomes

Lx− λNx = 0, λ ∈ [0, 1]

and when the strict inequalities hold in (I1), the following coincidence degree exist and
have the corresponding values, where dB denotes the Brouwer degree, and

DL(L−N, Ω0,0) = dB(Γ, (r1, s1), 0) = +1,

DL(L−N, Ω−1,−1) = dB(Γ, (r1 − T, s1 − T ), 0) = +1,
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DL(L−N, Ω−1,0) = dB(Γ, (r1 − T, s1), 0) = +1,

where (Γu)(t) = 1
2π

∫ 2π

0
[e(t)− g(t, u(t))]dt. But

Ω0,0 ∩ Ω−1,−1 = ∅

and
Ω0,0 ⊆ Ω−1,0, Ω−1,−1 ⊆ Ω−1,0.

So that the excision property of degree implies

1 = DL(L−N, Ω−1,0) =DL(L−N, Ω−1,−1, 0)

+ DL(L−N, Ω0,0, 0)

+ DL(L−N, Ω−1,0\(Ω̄−1,−1 ∪ Ω̄0,0))

=2 + DL(L−N, Ω−1,0\(Ω̄−1,−1 ∪ Ω̄0,0)).

Hence,
DL(L−N, Ω−1,0\(Ω̄−1,−1 ∪ Ω̄0,0)) = −1.

Hence, there exists a solution x2 such that, for all t ∈ [0, 2π], r1 − T < x2(t) <
s1, x2(τ) > s1 − T for some τ ∈ [0, 2π] and x2(τ ′) < r1 for some τ ′ ∈ [0, 2π].

Consequently, this solution cannot differ from the one in Ω0,0 by a multiple of T .
Hence (E)(B) has at least two solutions not differing by a multiple of T if (I ′1) holds.

Now, suppose (I2). Then, for all t ∈ [0, 2π], we have

e(t)− g(t, s1)− h(t, s1, 0) = e(t)− g(t, s1) > 0,

e(t)− g(t, r2)− h(t, r2, 0) = e(t)− g(t, r2) ≤ 0.

Hence, there exists at least one solution x1(t) of (E)(B) such that r2 ≤ x1(t) ≤ s1 for
all t ∈ [0, 2π]. Again, for all t ∈ [0, 2π], we have

e(t)− g(t, s2)− h(t, s2, 0) = e(t)− g(t, s2) ≥ 0,

e(t)− g(t, r1)− h(t, r1, 0) = e(t)− g(t, r1) < 0.

Therefore, there exists at least one solution x2(t) of (E)(B) such that r1 ≤ x2(t) ≤ s2

for all t ∈ [0, 2π]. Since r1 < s2 < r2 < s1, two solutions are different and moreover
two solutions can not differ from by a multiple of T because 0 < s1 − r1 < T . Since
g(t, s1) < e(t) < g(t, r1),as we did by the coincidence degree, we have a solution x3

such that, for all t ∈ [0, 2π], r1 − T < x3(t) < s1, x3(τ) > s1 − T for some τ ∈ [0, 2π]
and hence x3(τ) > s2−T , and x3(τ ′) < r1 for some τ ′ ∈ [0, 2π] and hence x3(τ ′) < r2.
Therefore the third solution can not differ from x1, x2 in Ω0,0 by a multiple of T .
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Consequently, there exist at least three solutions of (E)(B) not differing by a multiple
of T .

Now, suppose the strict inequalities hold;i.e., for all t ∈ [0, 2π],

(I ′2) g(t, s1) < g(t, s2) < e(t) < g(t, r2) < g(t, r1).

Note that, for all t ∈ [0, 2π], we have

e(t)− g(t, si + kT )− h(t, si + kT, 0) = e(t)− g(t, si) > 0,

e(t)− g(t, ri + jT )− h(t, ri + jT, 0) = e(t)− g(t, ri) < 0, i = 1, 2.

Then clearly (E)(B) has three solutions x1(t), x2(t) and x3(t) such that r1 ≤ x1(t) ≤
s2, s2 ≤ x2(t) ≤ r2 and r2 ≤ x3(t) ≤ s1, for all t ∈ [0, 2π], and they are distinct and
each of them are not differing by a multiple of T . For our fourth solution. Let

Ω<i,j>
k,J = {x ∈ C1[0, 2π]| ri + kT < x(t) < sj + jT, t ∈ [0, 2π], ‖x′‖∞ < C},

Ω[i,j]
k,J = {x ∈ C1[0, 2π]|si + kT < x(t) < rj + jT, t ∈ [0, 2π], ‖x′‖∞ < C}

(k ≤ 1), where C is constant given by Nagumo condition. But Ω1 = Ω<1,2>
−1,−1, Ω2 =

Ω[2,2]
−1,−1, Ω3 = Ω<2,1>

−1,−1, Ω4 = Ω<1,2>
0,0 , Ω5 = Ω[2,2]

0,0 , Ω6 =<2,1>
0,0 are mutually disjoint

subset of Ω<1,1>
−1,0 and

DL(L−N, Ω<1,1>
−1,0 ) = dB(Γ, (r1 − T, s1), 0) = +1,

DL(L−N, Ω1) = dB(Γ, (r1 − T, s2 − T ), 0) = +1,

DL(L−N, Ω2) = dB(Γ, (s2 − T, r2 − T ), 0) = −1,

DL(L−N, Ω3) = dB(Γ, (r2 − T, s1 − T ), 0) = +1,

DL(L−N, Ω4) = dB(Γ, (r1, s2), 0) = +1,

DL(L−N, Ω5) = dB(Γ, (s2, r2), 0) = −1,

DL(L−N, Ω6) = dB(Γ, (r2, s1), 0) = +1.

Hence, by the excision property of degree,

1 = DL(L−N, Ω<1,1>
−1,0 ) = 2 + DL(L−N, Ω<1,1>

−1,0 \ ∪1≤i≤6 Ω̄i).

Therefore
DL(L−N, Ω<1,1>

−1,0 \ ∪1≤i≤6 Ω̄i) = −1.
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Consequently, (E)(B) has a solution x4 in Ω<1,1>
−1,0 \ ∪1≤i≤6 Ω̄i;i.e., a solution such that

r1 − T < x(t) < s1 for all t ∈ [0, 2π], x4(τ1) > s2 − T, x4(τ2) < s2 − T, x4(τ3) >
r2−T, x4(τ4) < r2−T, x4(τ5) > s1−T, x4(τ6) < r1, x4(τ7) > s2, x4(τ8) < s2, x4(τ9) <
r2, x4(τ10) > r2 for some τ1, τ2, · · · , τ10 ∈ [0, 2π]. Thus this solution x4 can not differ
from x1, x2, x3 by a multiple of T .

EXAMPLE. Suppose h is a function satisfying the assumption above and Nagumo
condition on [r1 − 2π, 2π − r1] where r1 is the point at which a sin x + b sin 2x has its
maximum value. Let r2 ∈ [0, 2π] be a point at which a sin x + b sin 2x has it lelative
maximum such that g(r2) < g(r1). Then the boundary value problem

x′′(t) + h(t, x(t), x′(t)) + [a sin x + b sin 2x] = e(t),

x(0)− x(2π) = x′(0)− x′(2π) = 0

has at least one solution if ‖e‖∞ ≤ a sin r1 + b sin 2r1, at least two solutions not
differing by a multiple of 2π if ‖e‖∞ < asin r1 + b sin 2r1, at least three solutions not
differing by a multiple of 2π if ‖e‖∞ ≤ a sin r2 + b sin 2r2 and at least four solutions
not differing by a multiple of 2π if ‖e‖∞ < a sin r2 + b sin 2r2.
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