• Title/Summary/Keyword: Optimal design parameter

Search Result 754, Processing Time 0.025 seconds

A Continuous Network Design Model for Target-Oriented Transport Mode Choice Problem (목표지향 교통수단선택을 위한 연속형 교통망설계모형)

  • Im, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.157-166
    • /
    • 2009
  • A network design problem (NDP) is to find a design parameter to optimize the performance of transportation system. This paper presents a modified NDP, called target-oriented NDP, which contains a target that we try to arrive in real world, and also proposes a solution algorithm. Unlike general NDP which seeks an optimal value to minimize or to maximize objective function of the system, in target-oriented NDP traffic manager or operator can set a target level prior and then try to find an optimal design variable to attain this goal. A simple example for mode choice problem is given to test the model.

Optimal design of wind-induced vibration control of tall buildings and high-rise structures

  • Li, Qiusheng;Cao, Hong;Li, Guiqing;Li, Shujing;Liu, Dikai
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.69-83
    • /
    • 1999
  • The most common used control device on tall buildings and high-rise structures is active and passive tuned mass damper (ATMD and TMD). The major advantages of ATMD and TMD are discussed. The existing installations of various passive/active control devices on real structures are listed. A set of parameter optimization methods is proposed to determine optimal parameters of passive tuned mass dampers under wind excitation. Simplified formulas for determining the optimal parameters are proposed so that the design of a TMD can be carried out easily. Optimal design of wind-induced vibration control of frame structures is investigated. A thirty-story tall building is used as an example to demonstrate the procedure and to verify the efficiency of ATMD and TMD with the optimal parameters.

A new approach to working coil design for a high frequency full bridge series resonant inverter fitted contactless induction heater

  • Dhar, Sujit;Dutta, Biswajit;Ghoshroy, Debasmita;Roy, Debabrata;Sadhu, Pradip Kumar;Ganguly, Ankur;Sanyal, Amar Nath;Das, Soumya
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.283-291
    • /
    • 2017
  • High frequency full bridge series resonant inverters have become increasingly popular among power supply designers. One of the most important parameter for a High Frequency Full Bridge Series Resonant Inverter is optimal coil design. The optimal coil designing procedure is not a easy task. This paper deals with the New Approach to Optimal Design Procedure for a Real-time High Frequency Full Bridge Series Resonant Inverter in Induction Heating Equipment devices. A new design to experimental modelling of the physical properties and a practical power input simulation process for the non-sinusoidal input waveform is accepted. The design sensitivity analysis with Levenberg-Marquardt technique is used for the optimal design process. The proposed technique is applied to an Induction Heating Equipment devices model and the result is verified by real-time experiment. The main advantages of this design technique is to achieve more accurate temperature control with a huge amount of power saving.

A Study on the Design of Optimal Variable Structure Controller using Multilayer Neural Inverse Identifier (신경 회로망을 이용한 최적 가변구조 제어기의 설계에 관한 연구)

  • 이민호;최병재;이수영;박철훈;김병국
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.12
    • /
    • pp.1670-1679
    • /
    • 1995
  • In this paper, an optimal variable structure controller with a multilayer neural inverse identifier is proposed. A multilayer neural network with error back propagation learning algorithm is used for construction the neural inverse identifier which is an observer of the external disturbances and the parameter variations of the system. The variable structure controller with the multilayer neural inverse identifier not only needs a small part of a priori knowledge of the bounds of external disturbances and parameter variations but also alleviates the chattering magnitude of the control input. Also, an optimal sliding line is designed by the optimal linear regulator technique and an integrator is introduced for solving the reaching phase problem. Computer simulation results show that the proposed approach gives the effective control results by reducing the chattering magnitude of control input.

  • PDF

Optimal Design of a Circuit Breaker for Satisfying the Specified Dynamic Characteristics (규정된 동특성을 만족하기 위한 회로차단기의 최적설계)

  • Ahn, K.Y.;Cho, S.S.;Oh, I.S.;Kim, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.859-864
    • /
    • 2001
  • In a vacuum circuit breaker mechanism, a spring-actuated linkage system is used to satisfy the desired opening and closing characteristics of electric contacts. Because the opening and the closing dynamics of electric contacts is determined by such a linkage system, the stiffness, free length and attachment points of a spring become the important design parameters. In this paper, based on the dynamic model of the circuit breaker using a multibody dynamic program ADAMS, a optimal design procedure of determining the spring design parameters is presented. The proposed procedure is applied to the design of an opening spring for satisfying the specified opening characteristics.

  • PDF

Effective Determination of Optimal Regularization Parameter in Rational Polynomial Coefficients Derivation

  • Youn, Junhee;Hong, Changhee;Kim, TaeHoon;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.577-583
    • /
    • 2013
  • Recently, massive archives of ground information imagery from new sensors have become available. To establish a functional relationship between the image and the ground space, sensor models are required. The rational functional model (RFM), which is used as an alternative to the rigorous sensor model, is an attractive option owing to its generality and simplicity. To determine the rational polynomial coefficients (RPC) in RFM, however, we encounter the problem of obtaining a stable solution. The design matrix for solutions is usually ill-conditioned in the experiments. To solve this unstable solution problem, regularization techniques are generally used. In this paper, we describe the effective determination of the optimal regularization parameter in the regularization technique during RPC derivation. A brief mathematical background of RFM is presented, followed by numerical approaches for effective determination of the optimal regularization parameter using the Euler Method. Experiments are performed assuming that a tilted aerial image is taken with a known rigorous sensor. To show the effectiveness, calculation time and RMSE between L-curve method and proposed method is compared.

The study of autopilot system with pre-designed gain schedule (이득 스케쥴을 이용한 항공기 자동조종장치의 구성)

  • 장정순;박춘배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.613-618
    • /
    • 1993
  • This paper presents the aircraft autopilot system with a pre-designed gain schedule. It is mainly consisted of the parameter estimation end the autopilot system design. For off-line parameter estimation, leastsquare methods are investigated. The design of a controller is done in frequenced domain using classical control method and it is designed to satisfy the predetermined requirement such as time constant and transient response. Finally, it is compared with a optimal regulator.

  • PDF

Multiresponse Optimization Using a Response Surface Approach to Taguchi′s Parameter Design (다구찌의 파라미터 설계에 대한 반응표면 접근방법을 이용한 다반응 최적화)

  • 이우선;이종협;임성수
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.1
    • /
    • pp.165-194
    • /
    • 1999
  • Taguchi's parameter design seeks proper choice of levels of controllable factors (Parameters in Taguchi's terminology) that makes the qualify characteristic of a product optimal while making its variability small. This aim can be achieved by response surface techniques that allow flexibility in modeling and analysis. In this article, a collection of response surface modeling and analysis techniques is proposed to deal with the multiresponse optimization problem in experimentation with Taguchi's signal and noise factors.

  • PDF

The Study on the Design and Manufacturing of Combined Die for Both Sides of Front Fender (Front Fender LH/RH 일체 금형설계 및 제작에 관한 연구)

  • Jung, Hyo-Sang;Lee, Seoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.24-30
    • /
    • 1999
  • In the automobile development, press tool design and manufacturing are very difficult and need high cost experienced workers. Therefore, we concerned ourselves in the cost down and easy manufacturing. In this research, we have developed a tool for LH/RH of the front fender, which had difficulty in forming. We have carried out the drawing analysis by Pam-stamp and CATIA modeling. Finally, we get the optimal design parameter. As a result of try out, we found out the optimal width and margin at the center line for tool design. Also, in order to get good results we have to intaglio margin in the part of the wheel house and utilize double bead on every side except corner.

  • PDF

Optimum Geometric and Electrical Parameter for Minimization Torque Ripple of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화)

  • Choi, Jae-Hak;Kim, Sol;Lee, Kab-Jae;Lee, Ju;Hong, Kyung-Jin;Choi, Dong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.93-100
    • /
    • 2003
  • Switched reluctance motor(SRM) has some advantages such as low cost, high torque density but SRM has essentially high torque ripple due to its salient structure. In order to apply SRM to industrial field, torque ripple has to be reduced. This paper introduces optimal design process of SRM using an optimization algorithm of Progressive Quadratic Response Surface Modeling(PQRSM) and two-dimensional(2D) Finite Element Method(FEM). The electrical and geometrical design parameters have been adopted as 2D design variables. From this work, it can be obtained both the optimal design minimized torque ripple and the optima1 design maximized the average torque, respectively. Finally, this Paper Presents Performance comparison of two optimal designs and consider influence of the selected design variables in torque characteristics.