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Abstract

Recently, massive archives of ground information imagery from new sensors have become available. To 
establish a functional relationship between the image and the ground space, sensor models are required. The 
rational functional model (RFM), which is used as an alternative to the rigorous sensor model, is an attractive 
option owing to its generality and simplicity. To determine the rational polynomial coefficients (RPC) in RFM, 
however, we encounter the problem of obtaining a stable solution. The design matrix for solutions is usually 
ill-conditioned in the experiments. To solve this unstable solution problem, regularization techniques are 
generally used. In this paper, we describe the effective determination of the optimal regularization parameter 
in the regularization technique during RPC derivation. A brief mathematical background of RFM is presented, 
followed by numerical approaches for effective determination of the optimal regularization parameter using the 
Euler Method. Experiments are performed assuming that a tilted aerial image is taken with a known rigorous 
sensor. To show the effectiveness, calculation time and RMSE between L-curve method and proposed method is 
compared.
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1. INTRODUCTION

Increasing demand for accurate spatial information, 
massive archives of ground information are provided 
by imagery from new sensors (e.g. IKONOS, GeoEye, 
and QuickBird satellite etc.). To establish a functional 
relationship between the image space and the ground space, 
sensor models are required. There are two categories for 
sensor models. One is a rigorous sensor model and the other 
is a generalized sensor model. 

A rigorous sensor model produces high accuracy; however, 
it has several disadvantages. A rigorous sensor model, which 
is based on collinearity equations, presents the rigorous 
imaging geometric relationship between an image point and 

the homologous ground point, with parameters of physical 
meaning (Tong et al., 2010). The advantages of the rigorous 
sensor model are that it is very suitable for adjustment by 
analytical triangulation and normally yields high accuracy. 
However, it is complicated and the parameters used in the 
rigorous sensor model are usually kept confidential in the 
sensors. Some commercial satellite vendors have adopted 
a generalized sensor model, instead of the rigorous sensor 
model, to the end users (Di et al., 2003; Tao and Hu, 2002).

The rational functional model (RFM), which is one of 
the most popular generalized sensor models (Tong et al., 
2010; Tao and Hu, 2001), has drawn special attention in 
the photogrammetry and remote sensing fields. One of 
the advantages of RFM is its sensor independence. The 
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transformation between the image point and ground point 
is represented as a rational function without modeling the 
rigorous imaging process. Although rigorous sensor models 
produce more accurate results, the difference is negligible 
(Dial and Grodecki, 2005). Grodecki(2001) reported that the 
IKONOS rational model differs by no more than 0.04 pixel 
from the rigorous sensor model, with the RMS error below 
0.01 pixel. Furthermore, the sensor information is effectively 
kept confidential by providing the RFM, due to the difficulty 
of transforming from the RFM to the rigorous sensor model. 

The RFM expresses image coordinates as a ratio of two 
polynomials with variables of ground coordinate. The 
polynomial coefficients in the RFM are called rational 
polynomial coefficients (RPC). Comparing the rigorous 
sensor model and the RFM, the RFM would be over-
parameterized (Fraser et al., 2006). The ground to image 
transformation can be achieved with an 8-coefficient affine 
model. On the other hand, the usual number of RPC is 80. 
That could cause the design matrix to become almost rank 
deficient due to the complex correlation among RPC (Lin 
and Yuan, 2008) resulting in numerical instability in the 
least square adjustment (Lin and Yuan, 2008). To solve such 
an instability problem, a regularization technique with a 
regularization parameter (RP) is generally used. 

The determination of an optimal RP has still been 
a challenging topic. There are several methods for the 
determination of an RP, including L-curve, U-curve, and 
ridge tracing methods. The L-curve (Hansen, 1992) is a log-
log plot of the norm of a regularized solution versus the norm 
of the corresponding residual (fitting error) as the RP is varied 
(Choi et al., 2007). In Hansen(1992), the point on the L-curve 
that had the maximum curvature should be chosen as the 
corner of the curve and consequently became the optimal RP. 
This method can be automated without plotting the curve. An 
improvement to this approach using “U-curve” is reported in 
Krawczy-Stando and Rudnicki(2007). In this approach, the 
authors proposed a function that is expressed as a summation 
of the inverse number of the solution norm and the inverse 
number of the residual norm. They chose the optimal RP as 
the one producing the minimum value in the function. The 
limitation of L-curve method is that finding optimal RP is 
dependent on the number of k set in equation 19. With the 

small number of k set, finding optimal RP could be failure, 
because the curvature can be distorted. While the large 
number of k set, calculation time would be increased. The 
calculation time issue is similarly applied to U-curve method. 
In the ridge tracing method, root mean square errors are 
computed for a large number of different RPs. The best one 
is selected by suitable heuristics (e.q. trial method). Applying 
the ridge tracing methods to obtain an RP in RPC derivation is 
tried by Tao and Hu(2001) and Zhan et al.(2008). They chose 
the optimal RP within the range extracted by experiments, 
and proved that RMSE is not sensitive to a particular RP as 
long as the RP is within the specific range. The advantage 
of the ridge tracing method is its simplicity and generality. 
That means it is independent of condition number and noise. 
In this paper, we introduce a numerical approach for effective 
determination of an RP in the ridge tracing method using the 
Euler root-finding method. Our approach is independent of ill-
condition or well-condition, unlike the L-curve and U-curve 
methods. The RP can be determined at the target accuracy 
and can be calculated effectively. In this paper, we use the 
terminology “effective” as simple, general, and fast.

This paper is organized as follows. Section 2 presents 
a mathematical background of RPC derivation in RFM 
with a terrain independent model. This is followed by a 
numerical approach for the automatic detection of the RP in 
the regularization process. Our algorithm is exercised with 
terrain independent scenarios. 

2. GENERAL SOLUTION FOR RFM

The RFM relates ground coordinates (X, Y, Z) to image 
coordinates (r, c) in the form of rational functions that are 
ratios of polynomials. For the ground to image transformation, 
the defined ratios of polynomials have the following form for 
each section: 
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, where rn and cn are the normalized row and column 

indices of the pixels in the image space, and Xn , Yn, and Zn 
represent normalized coordinate values of the object points 
in the ground space. Here, aijk, bijk, cijk, and dijk are polynomial 
coefficients called RPC. The total number of aijk, bijk, cijk, 
and dijk is 80. b1 and d1 are usually set to 1. Therefore, the 
number of RPC is 78. The normalization of the coordinates 
is calculated as:

s
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, where r0 and c0 are row offset values and column offset 
values for the image coordinates. rs and cs are row scale 
values and column scale values for the image coordinates. 
Similarly, X0, Y0, and Z0 are offset values for the ground 
coordinates. In addition, Xs, Ys, and Zs are scale values for 
the ground coordinates. The offsets and scales normalize the 
coordinates to [-1. 1].

To obtain the aijk, bijk, cijk, and dijk, a least square solution 
is used. Eqs. (1) and (2) are rewritten as nonlinear condition 
equations, 

0),( =xlF                                                                            (8)

, where l represents the observation vector (rn, cn, Xn , Yn, 
and Zn) and x represents the parameter vector (aijk, bijk, cijk, 
and dijk). For the least square adjustment, the linearization of 
Eq. (8) follows:

fBv =∆+                                                                       (9)

, in which f is given by:  
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,where l is the approximation vector for the observation 
and x0 is the approximation vector for the parameters. ∆  
is the vector of corrections to the approximations for the 
parameters. v is the vector of observational residuals and B is 
the design matrix of the partial derivation of F with respect 
to the parameters as follows:  )],([ 0xlFf   
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The normal equation matrix and the vector of correction 
matrix are represented respectively as: 
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, in which fx is given by 
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, where lx is a vector of parameter observations, and 
W is weight matrix. x0 is updated x0 plus ∆ . The iteration 
step is stopped when ∆  is less than a threshold, which is 
insignificantly small. The final least square estimates of 
parameter x̂  is

∆+= 0ˆ xx                                                                         (15)

3. REGULARIZATION 

The RPC in the RFM are highly correlated between 
coefficients. As a result, the matrix B in Eq. (11) is usually ill-
conditioned and matrix N in Eq. (12) can become singular. It 
happens often when high order (i.e., more than second-order) 
polynomials in the RFM are used (Tao and Hu, 2001). The 
negative impact of this is that the iterative solution cannot be 
converged (Tao and Hu, 2001).

In order to tackle the possible ill-conditioned problem 
during the least square adjustment, a regularization 
technique, in which a small multiplication (i.e., RP) of the 
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identity matrix is added, is applied. With this modification, 
the normal equation matrix in Eq. (12), correction vector in 
Eq. (13), and final estimates of the parameter matrix in Eq. 
(15) are rewritten as: 
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, where λ  is RP.
Determination of RP λ  is non-trivial. The L-curve 

method is finding out the point with biggest curvature for 
L-curve which is a log-log plot of the norm of a regularized 
solution versus the norm of the corresponding residual as the 
RPs are varied (Lin, 2008). L-curve is presented as 
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L-curve is L-shaped, therefore it presents vertical for small 
k, and approximately horizontal for large k, with the corner 
providing the optimal RP (Lin, 2008). To find out the biggest 
curvature: 

3 222 )''(
''''''maxarg

ηξ

ηξηξ

−

−
=RPoptk                                      (20)

,where 'ξ and ''ξ  are the first and the second derivatives of 
ξ  on k respectively, and 'η  and ''η  are the first and second 
derivatives of η  on k respectively. In Eq. (20), RPoptk  is the 
determined optimal regularized parameter.

Here, we propose the effective determination of the 
optimal RP using the Euler Method. First, a root mean square 
error function is presented as: 
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Here, NCK is the number of checkpoints. irλ  and icλ  are 
image coordinates obtained by using Eqs. (1) and (2) with 
the known ground coordinates and adjusted parameters 
that are from Eq. (18) at specific λ , rigir  and rigic are image 

coordinates obtained by using the rigorous sensor model with 
the known ground coordinates. 

From the Euler method (Gerald and Wheatley, 1994), the 
first derivative of the root mean square error function in Eq. 
(21) can be numerically written as:
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The Euler step for finding the optimum λ  is derived as:
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where h is the step size. This equation is iteratively 
solved and the iteration is stopped when the value of the 
first derivative of the λ  function is insignificantly small. 
Theoretically, a small λ∆ and h make a more accurate 
solution when the iteration time is increased(Gerald and 
Wheatley, 1994). 

4. EXPERIMENT AND RESULTS

The RPC in the RFM can be solved for with or without 
knowing the rigorous sensor model (Tao and Hu, 2001). 
The rigorous sensor model being available, the terrain 
independent solution is able to be developed. In the terrain 
independent scenarios, the RFM can be solved using a 
ground grid with its grid-point coordinates determined using 
a rigorous sensor model. We modify the terrain independent 
scenarios proposed by Tao and Hu(2001).  

First, a 3D object grid in the ground space is established. 
The maximum and minimum easting-ground UTM 
coordinates of the grid are 506,600 and 507,460 meters, 
respectively. The maximum and minimum northing-ground 
UTM coordinates of the grid are 4,474,600 and 4,475,630 
meters, respectively. The relief range is from zero to 400 
meters. The grid intervals of easting, northing, and height 
are 100, 100, and 50 meters, respectively. Next, an image 
grid in the image space is determined. Using the available 
rigorous sensor model, corresponding image coordinates 
of the ground coordinates are calculated. Fig. 1 shows the 
used fitting points and checking points of the object grid. 
The location of the exposure station in the ground space 
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is also presented in Figs 1, 2, and 3. In Fig. 4, we present 
fitting points and checking points in the image space. The 
number of fitting points and checking points are 71 and 284, 
respectively. The parameters used for the rigorous sensor 
model are shown in Table 1. For the details of the notation 
used in Table 1, see Wolf and Dewitt(2000).

The unknown RPC can be calculated using the 
corresponding image and object grid points with Eqs. (1-18) 
presented in the previous section. To show the RP effects 
on the RMSE, we calculate the RMSE of checkpoints with 
increasing RPs. Figures 5 and 6 show the results of RP versus 
RMSE. In Figures 5 and 6, the x-axis denotes the RP and the 
y-axis denotes the RMSE calculated by Eq. (21). Fig. 5 shows 
the RMSE of the checkpoints with an RP range from 4x10-7 
to 3.2x10-5. The step size of the RP is 1x10-7. The RMSE of 
the check points with an RP range from 4x10-5 to 1x10-1 are 
presented in Fig. 6. Figs. 5 and 6 show that the RMSE curve 
decreases when the RP increases from near zero RP, and 
continues nearly flat with increasing RPs. The RMSE curve 
is increased from the specific RP. Therefore, we conclude 
that the optimal RP can be determined using the Euler root 
finding method. 

The optimal RP is calculated using Eqs. (21), (22), and (23). 
The initial RP is set to 1x10-1, and the step size h is set to 1x10-

3 in Eq. (23). λ∆  is 1x10-5 in Eq. (22). In this experiment, 

Fig. 1. Fitting points, checking points, and exposure 
station in the ground space(3D)

Fig. 3. Fitting points, checking points, and exposure 
station in the ground space (X-Z plane)

Fig. 2. Fitting points, checking points, and exposure 
station in the ground space (X-Y plane)

Table 1. Parameters used for rigorous sensor model

Rotation angle ω -1.18445382 radian
Rotation angle φ 0.30607712 radian
Rotation angle κ 3.03356237 radian

Focal length f 3310.0 pixel
Coordinates of principal 

point (xa, ya)
(45.0,50.0)pixel

Exposure station XL 507,471.474 meter
Exposure station YL 4,475,970.091 meter
Exposure station ZL 463.380 meter

Fig. 4. Fitting points and checking points in the image 
space
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the determined RP with the proposed method is 1.368x10-4 
, and the RMSE for the RP is 0.1014 pixel. The calculation 
time for the proposed method is 0.0862 second. To show the 
effectiveness of the proposed method, optimal RP is obtained 
by using L-curve method. L-curve method is finding 
maximum curvature in the plot of the norm of a regularized 
solution versus the norm of the corresponding residual as the 
RP is varied. Candidates of optimal RP, k set in Eq. (19), are 
varied from 1x10-6 to 1x10-1. The interval of k set is 5x10-5. 
With the k set, solutions and residuals for each k is calculated 
by using Eqs. (1-18). From the Eq. (19), we obtain the L-curve 
presented in Fig. 7. Determined optimal RP being calculated 
by using Eq. (20) is 2.510x10-4, and the RMSE for the RP is 
0.0949 pixel. The calculation time for the L-curve method is 
1.0631 second. All algorithms are programmed by MATLAB 
software. The results of proposed method and L-curve 
method are shown in Table 2. In Table 2, RMSE differences 
for two methods are not a crucial, because those are less 
than 1 pixel. We are focusing the calculation times. In this 
experiment, the number of k set for L-curve is 2000, and the 
calculation time is 1.0631 second. The calculation time for 
the proposed method is only 0.0862 second. If we want to 
calculate the optimal RP with the L-curve method as fast 
as with the proposed method, the number of k set should be 
decreased about 170. With the small size of k set, calculated 
RP cannot be secured as optimal one, because points are not 
densely distributed in the curve. Therefore, we can conclude 
that the propose method is more time efficient than L-curve 
method.     

5. CONCLUSIONS 

This paper presents effective determination of optimal RP 
in rational polynomial coefficients derivation. The curve of 
RMSE versus RP has a tendency with the variation of RP. 
The curve decrease when RP increase from near zero RP, 
continues nearly flat with increasing RPs, and is increased 
from the specific RP. Therefore, optimal RP can be 
determined by using the Euler root finding method. First, we 

Fig. 5. RP vs. RMSE, a range of RPs from 4x10-7 to
3.2x10-5

Fig. 6. RP vs. RMSE, a range of RPs from 4x10-5 to 1x10-1

Fig. 7. Residual norm vs. solution norm, a range of ks from 
1x10-6 to 1x10-1

Table 2. Results of proposed method and L-curve method

Determined 
RP RMSE Calculation 

time
Proposed 
method 1.368x10-4 0.1014 pixel 0.0862 

second
L-curve 
method 2.510x10-4 0.0949 

pixel
1.0631 
second



Effective Determination of Optimal Regularization Parameter in Rational Polynomial Coefficients Derivation

583  

define the RMSE function for RP. Next, optimal RP, which 
produces minimum RMSE, is numerically calculated by 
Euler method. The calculation time for the proposed method 
is 0.0862 second, and RMSE is 0.1014 pixel in the experiment. 
Experiment shows that the proposed method is time efficient 
comparing with L-curve method. Our future plan include 
the how calculation time and RMSE have a tendency upon 
various rigorous sensor models and initial value for RP and 
step size. 
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