Optimum Geometric and Electrical Parameter for Minimization Torque Ripple of Switched Reluctance Motor

스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화

  • 최재학 (한양대 대학원 전기공학과) ;
  • 김솔 (한양대 대학원 전기공학과) ;
  • 이갑재 (한양대 대학원 전기공학과) ;
  • 이주 (한양대 전자전기컴퓨터공학부) ;
  • 홍경진 (한양대 대학원 기계설계공학과) ;
  • 최동훈 (한양대 대학원 기계설계공학과)
  • Published : 2003.03.01

Abstract

Switched reluctance motor(SRM) has some advantages such as low cost, high torque density but SRM has essentially high torque ripple due to its salient structure. In order to apply SRM to industrial field, torque ripple has to be reduced. This paper introduces optimal design process of SRM using an optimization algorithm of Progressive Quadratic Response Surface Modeling(PQRSM) and two-dimensional(2D) Finite Element Method(FEM). The electrical and geometrical design parameters have been adopted as 2D design variables. From this work, it can be obtained both the optimal design minimized torque ripple and the optima1 design maximized the average torque, respectively. Finally, this Paper Presents Performance comparison of two optimal designs and consider influence of the selected design variables in torque characteristics.

Keywords

References

  1. T. J. E. Miller, Switched Reluctance Motors and their control, Hillsboro, OH; Magna Physics Publishing and London: Oxford University Press, 1993
  2. W. F. Ray, P. J. Lawrenson, R. M. Davis, J. M. Stephenson, N. N. Fulton, and R. J. Blake, 'High performance switched reluctance brushless drives,' IEEE Trans. Ind. Application, vol. IA-22, no. 4, pp. 722-730, 1986 https://doi.org/10.1109/TIA.1986.4504784
  3. Funda Sahin, H. Bulent Ertan and Kemal Leblebicioglu, 'Optimum Geometry for Torque Ripple Minimization of Switched Reluctance Motors,' IEEE Trans. on Energy conversion, vol. 15, no. 1, pp. 30-39, March 2000 https://doi.org/10.1109/60.849113
  4. Y. Ohdachi and Y. Kawase, 'Optimum Design of Switched Reluctance Motors using Dynamic Finite Element Analysis,' IEEE Trans. on Magnetics, vol. 33, pp. 2033-2036, March 1997 https://doi.org/10.1109/20.582709
  5. S. Brisset and P. Brochet, 'Optimization of Switched Reluctance Motors using Deterministic Methods with Static and Dynamic Finite Element Simulation,' IEEE Trans. on Magnetics, vol. 34, p. 2853-2856, September 1998 https://doi.org/10.1109/20.717664
  6. S. -B. Yoon, J. Hur, Y. D. Chun, and D. -S. Hyun, 'Shape optimization of solenoid actuator using the finite element method and numerical optimization technique,' IEEE Trans on Magnetics, vol. 33, No.5, pp. 4140, 1997 https://doi.org/10.1109/20.619689
  7. 임달호, 전기계의 유한요소법, 동명사, 1986
  8. Jasbir S. Arora, Introduction To Optimum Design, Mcgraw-Hill International Editions, 1994
  9. 홍경진, '반응표면 모델링을 이용한 신뢰영역 관리 순차적 근사 최적화,' 박사학위논문, 한양대학교, 2001
  10. K.- J. Hong, M. -S. Kim, and D. -H. Choi, 'Efficient Approximation Method for Constructing Quadratic Response Surface Model,' KSME International Journal, vol. 15, no. 7, pp. 876, 2001
  11. 최재학, '유한요소법을 이용한 스위치드 릴럭턴스 전동기의 구동 특성 향상을 위한 설계,' 석사학위논문, 한양대학교, 2001
  12. G. N. Vanderplaats, 'Ads-A Fortran Program For Automated Design Synthesis', Engineering Design Optimization, Inc., 1987
  13. Myers, R. H. and Montgomery, D. C., Response Surface Methodology - Process and Product Optimization Using Designed Experiments, John Wiley & Sons, New York, 1995
  14. Wujek, B, Renaud, J. E., Batill, S. M. and Brockman, J. B., 'Concurrent Subspace Optimization Using Design Variable Sharing in a Distributed Computing Environment,' Concurrent Engineering: Research and Applications (CERA), Technomic Publishing Company Inc, December, 1996
  15. Unal, R., Lepsch, R. A. and McMilin, M. L., 'Response Surface Model Building and Multidisciplinary Optimization Using D-Optimal Designs,' Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis Optimization, St. Louis, Missouri, September 2-4, AIAA-98-4759, pp. 405-411, 1988
  16. Fletcher, R., Practical Method of Optimization, John Wiley & Sons, Chichester, 1987