• Title/Summary/Keyword: Optics fabrication

Search Result 342, Processing Time 0.025 seconds

Encapsulation and optical properties of Er3+ ions for planar optical amplifiers via sol-gel process (졸-겔법을 이용한 광증폭기의 Er 이온 캡슐화 및 광학적 특성)

  • Kim, Joo-Hyeun;Seok, Sang-Il;Ahn, Bok-Yeop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.135-135
    • /
    • 2003
  • The fast evolution in the fold of optical communication systems demands powerful optical information treatment. These functions can be performed by integrated optical systems. A key component of such systems is erbium doped waveguide amplifier(EDWA). The intra 4f radiative transition of Er at 1.5 $\mu\textrm{m}$ is particularly interesting because this wavelength is standard in optical telecommunications. The fabrication of waveguide amplifier for integrated optics using sol-gel process has received an increasing attention. Potential advantage of lower cost by less capital equipment and easy processing makes this process an attractive alternatives to conventional technologies like flame hydrolysis deposition, ion exchange and chemical vapor deposition, etc. In addition, sol-gel process has been found to be extremely suitable for the control of composition and refractive index related directly with optical properties. The main drawback of such an amplifier with respect to the EDWA is the need for a much higher Er3+ concentration to compensate for the smaller interaction length. However, the high doping of Er might be resulted in the non-radiative relaxation by clustering of Er ions End co-operative upconversion. In order to solve this problem, we investigate the possibility of avoiding short Er-Er distances by encapsulation of Er3+ ions in hosts such as organic-inorganic hybrid materials. For inorganic-organic hybrid sols, methacryloxypropyltrimethoxysilane (MPTS), zirconyl chloride octahydrate and erbium(III) chloride hexahydrate were used as starting materials, followed by conventional sol-gel process. It was observed by TEM that nano sols having core/shell toplology were formed, depending on the mole ratio of Zr/Er. The surface roughness for the coatings on Si substrate was investigated by AFM as a function of Zr/Er ratio. The local environment and vibrational Properties of Er3+ ions were studied using Near-IR, FT-IR, and UV/Vis spectroscopy. Nano hybrid coatings derived from polymer and Er doped encapsulation Eave the good luminescence at 1.55$\mu\textrm{m}$.

  • PDF

Fabrication of Microcrystalline NaPbLa(WO4)3:Yb3+/Ho3+ Phosphors and Their Upconversion Photoluminescent Characteristics

  • Lim, Chang Sung;Atuchin, Victor V.;Aleksandrovsky, Aleksandr S.;Denisenko, Yuriy G.;Molokeev, Maxim S.;Oreshonkov, Aleksandr S.
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.741-746
    • /
    • 2019
  • New triple tungstate phosphors NaPbLa(WO4)3:Yb3+/Ho3+ (x = Yb3+/Ho3+ = 7, 8, 9, 10) are successfully fabricated by microwave assisted sol-gel synthesis and their structural and frequency upconversion (UC) characteristics are investigated. The compounds crystallized in the tetragonal space group I41/a and the NaPbLa(WO4)3 host have unit cell parameters a = 5.3927(1) and c = 11.7961(3) Å, V = 343.05(2) Å3, Z = 4. Under excitation at 980 nm, the phosphors have yellowish green emissions, which are derived from the intense 5S2/5F45I8 transitions of Ho3+ ions in the green spectral range and strong 5F55I8 transitions in the red spectral range. The optimal Yb3+:Ho3+ ratio is revealed to be x = 9, which is attributed to the quenching effect of Ho3+ ions, as indicated by the composition dependence. The UC characteristics are evaluated in detail under consideration of the pump power dependence and Commission Internationale de L'Eclairage chromaticity. The spectroscopic features of Raman spectra are discussed in terms of the superposition of Ho3+ luminescence and vibrational lines. The possibility of controlling the spectral distribution of UC luminescence by the chemical content of tungstate hosts is demonstrated.

Fabrication of deflector integrated laser diodes and light deflection (광 편향기 집적 레이저 다이오드의 제작 및 광의 편향)

  • 김강호;권오기;김종회;김현수;심은덕;오광룡;김석원
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.171-176
    • /
    • 2004
  • A light deflector integrated laser diode(LD) was fabricated and the characteristics of LD and ourput beam deflection as a function of deflector injection current were measured. To integrate the deflector with LD, a passive waveguide was integrated with the LD and a triangular-type light deflector was fabricated on the upper clad of the passive waveguide section. Light deflection from the fabricated light deflector is controlled by the effective refractive index variation induced by carrier injection. To characterize the effect of the deflector injection current, threshold current, slope efficiency, and output beam spectrum were measured as a function of deflector injection current. From these measured data, the increment in the threshold current and the decrement of the slope efficiency were observed. However, the output beam spectrum was not affected by the deflector. The Beam Propagation Method(BPM) was used to simulate the proposed device and the light deflection was measured by the far-field pattern of the output beam as a function of the deflector injection current. In the fabricated deflector integrated LD, the deflection angle of 1.9$^{\circ}$ at the injection current of 15 ㎃ was obtained.

Point-diffraction interferometer for 3-D profile measurement of light scattering rough surfaces (광산란 거친표면의 고정밀 삼차원 형상 측정을 위한 점회절 간섭계)

  • 김병창;이호재;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.504-508
    • /
    • 2003
  • We present a new point-diffraction interferometer, which has been devised for the three-dimensional profile measurement of light scattering rough surfaces. The interferometer system has multiple sources of two-point-diffraction and a CCD camera composed of an array of two-dimensional photodetectors. Each diffraction source is an independent two-point-diffraction interferometer made of a pair of single-mode optical fibers, which are housed in a ceramic ferrule to emit two spherical wave fronts by means of diffraction at their free ends. The two spherical wave fronts then interfere with each other and subsequently generate a unique fringe pattern on the test surface. A He-Ne source provides coherent light to the two fibers through a 2${\times}$l optical coupler, and one of the fibers is elongated by use of a piezoelectric tube to produce phase shifting. The xyz coordinates of the target surface are determined by fitting the measured phase data into a global model of multilateration. Measurement has been performed for the warpage inspection of chip scale packages (CSPs) that are tape-mounted on ball grid arrays (BGAs) and backside profile of a silicon wafer in the middle of integrated-circuit fabrication process. When a diagonal profile is measured across the wafer, the maximum discrepancy turns out to be 5.6 ${\mu}{\textrm}{m}$ with a standard deviation of 1.5 ${\mu}{\textrm}{m}$.

Fabrication and characterization of grating-assisted co-directional coupler wavelength filter in InP (좁은 파장대역폭을 갖는 격자도움형 방향성 결합기 필터의 제작과 특성측정)

  • 김덕봉;박찬용;김정수;이승원;오광룡;김흥만;편광의;윤태훈
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.149-153
    • /
    • 1997
  • We demonstrate the operating characteristics(center wavelength, bandwidth, TE/TM polarization, tuning range) of grating-assisted co-directional coupler(GACC) filter fabricated with InGaAsP compound semiconductor. A design of waveguide structure has been focused on the narrow bandwidth characteristics of the filter. Reactive ion etching technique was employed for the uniform waveguide formation. The bandwidths(FWHM) and center wavelengths of the fabricated GACC filter were measured by 1.5 nm and 1530.6 nm for TE polarization and 1.3 nm and 1494.0 nm for TM polarization. This is the one of the narrowest bandwidth at 1530 nm region ever reported. The center wavelength shifted form 1530 nm to 1538 nm when the current of 100 mA was injected at 4.5 mm-long device. Good agreement between the designed and measured operating characteristics for some waveguide structures is demonstrated.

  • PDF

Laser lithography system for the fabrication of optical waveguides (광도파로 소자 제작을 위한 레이저 리소그래피 장치)

  • Park, K. H.;Byun, Y. T.;Kim, M. W.;Kim, S. H.;Choi, S. S.;Cho, W. R.;Park, S. H.;Kim. U.
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.169-173
    • /
    • 1997
  • Most conventional lithography systems have been oriented to fabricate electronic devices. Therefore, it is not so easy to fabricate large aspect ratios of waveguide patterns with those systems. When considering costs and efficiencies, a laser lithography system provides number of benefit in realizing waveguide patterns. However, because the conventional laser lithography system could make only positive tone masks, it is inconvenient in determining the direction of the waveguide. A simple and reliable technique to produce negative tone masks was developed by using the laser beam writing. This technique was not sensitive to environmental situations such as dust, vibration, intensity variation. Making use of the technique a variety of device patterns such as Y-branch, directional coupler, and highly smooth S-shape bend could be successfully fabricated with a good contrast.

  • PDF

Design and Fabrication of Low Cost Infrared Optical System Using Precision Glass Molding Lens Made by Chalcogenide Glass (칼코게나이드 유리 소재의 PGM 가공 렌즈를 사용한 저가의 적외선 광학계 설계와 제작)

  • Oh, Seung Eun;Lee, Sun Kyu;Choi, Joong Kyu;Song, Kook Hyun;Baek, Jong Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.154-158
    • /
    • 2012
  • In this paper, for low cost infrared optical equipment, we design and fabricate an infrared optical system for an uncooled detector using PGM(Precision Glass Molding) lenses. The designed infrared optical system has a good athermalization, and the material of all of its lenses is a chalcogenide glass suitable for the PGM method. In addition, we also fabricate the same infrared optical system using SPDT(Single Point Diamond Turning) lenses in order to measure the optical performance of PGM lenses. We measure the MTF(Modulation Transfer Function) of the two infrared optical systems which use the PGM lenses and the SPDT lenses. And then we compare and analyze the images of them both. As a result, we find that they have only a very small difference in optical performance. If the use of PGM lenses increases, we expect to reduce the cost of infrared optical equipment.

Study on the Novel Fabrication Method of Highly Birefringent Photonic Crystal Fiber (새로운 구조의 큰 복 굴절을 가진 광자결정 광섬유의 제작에 관한 연구)

  • Ma, Kyung-Sik;Kim, Gil-Hwan;Hwang, Kyu-Jin;Eom, Sung-Hoon;Lee, Kwan-Il;Jung, Je-Myung;Lee, Sang-Bae
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.6
    • /
    • pp.235-240
    • /
    • 2010
  • We fabricate highly birefringent photonic crystal fiber with new structure using a stack and draw method. Fabricated fiber has two big air holes, one at each side of the outside air cladding region, leading to core ellipticity during the drawing process. Birefringence of the fabricated Hi-Bi PCF is measured to be $2.29{\times}10^{-4}$ (at 1550 nm).

Simulation of an X-ray Fresnel Zone Plate with Nonideal Factors

  • Chen, Jie;Fan, Quanping;Wang, Junhua;Yuan, Dengpeng;Wei, Lai;Zhang, Qiangqiang;Liao, Junsheng;Xu, Min
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • Fresnel zone plates have been widely used in many applications, such as x-ray telescopes, microfluorescence, and microimaging. To obtain an x-ray Fresnel zone plate, many fabrication methods, such as electron-beam etching, ion-beam etching and chemical etching, have been developed. Fresnel zone plates fabricated by these methods will inevitably lead to some nonideal factors, which have an impact on the focusing characteristics of the zone plate. In this paper, the influences of these nonideal factors on the focusing characteristics of the zone plate are studied systematically, by numerical simulations based on scalar diffraction theory. The influence of the thickness of a Fresnel zone plate on the absolute focusing efficiency is calculated for a given incident x-ray's wavelength. The diffraction efficiency and size of the focal spot are calculated for different incline angles of the groove. The simulations of zone plates without struts, with regular struts, and with random struts are carried out, to study the effects of struts on the focusing characteristics of a zone plate. When a Fresnel zone plate is used to focus an ultrashort x-ray pulse, the effect of zone-plate structure on the final pulse duration is also discussed.

Design and analysis of two-dimensional binary phase masks for the fabrication of two-and three-dimensional periodic structures (2차원 및 3차원의 주기적인 구조 제작을 위한 2차원 이진 위상마스크의 설계와 분석)

  • 김남식;원영희;고근하;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.1
    • /
    • pp.17-24
    • /
    • 2001
  • Two-dimensional binary-phase diffraction gratings which can be employed to fabricate two- and three-dimensional periodic structures are designed and analyzed using rigorous coupled-wave analysis. These gratings serve as phase-masks which generate several diffracted waves from a normally incident beam and thus can produce a periodic interference pattern in space via nearfield holography. The properties of the diffracted beams can be controlled by varying the polarization and wavelength of the incident beam, surface-profile, groove depth and duty cycle of the mask. For the two-dimensional structure, optimum results can be obtained when the diffraction efficiency of the zero-order beam is minimized while that of the first-order maximized. On the other hand, when the diffraction efficiency of the zero-order is appreciable or even greater than other orders, we can obtain a variety of three-dimensional interference patterns which may be used to fabricate photonic crystals of tetragonal-body-centered and hexagonal structures in a submicron scale. scale.

  • PDF