DOI QR코드

DOI QR Code

Fabrication of Microcrystalline NaPbLa(WO4)3:Yb3+/Ho3+ Phosphors and Their Upconversion Photoluminescent Characteristics

  • Lim, Chang Sung (Department of Aerospace Advanced Materials & Chemical Engineering, Hanseo University) ;
  • Atuchin, Victor V. (Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS) ;
  • Aleksandrovsky, Aleksandr S. (Laboratory of Coherent Optics, Kirensky Institute of Physics Federal Research Center KSC SB RAS) ;
  • Denisenko, Yuriy G. (Department of Inorganic and Physical Chemistry, Tyumen State University) ;
  • Molokeev, Maxim S. (Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS) ;
  • Oreshonkov, Aleksandr S. (Siberian Federal University)
  • Received : 2019.11.01
  • Accepted : 2019.11.23
  • Published : 2019.12.27

Abstract

New triple tungstate phosphors NaPbLa(WO4)3:Yb3+/Ho3+ (x = Yb3+/Ho3+ = 7, 8, 9, 10) are successfully fabricated by microwave assisted sol-gel synthesis and their structural and frequency upconversion (UC) characteristics are investigated. The compounds crystallized in the tetragonal space group I41/a and the NaPbLa(WO4)3 host have unit cell parameters a = 5.3927(1) and c = 11.7961(3) Å, V = 343.05(2) Å3, Z = 4. Under excitation at 980 nm, the phosphors have yellowish green emissions, which are derived from the intense 5S2/5F45I8 transitions of Ho3+ ions in the green spectral range and strong 5F55I8 transitions in the red spectral range. The optimal Yb3+:Ho3+ ratio is revealed to be x = 9, which is attributed to the quenching effect of Ho3+ ions, as indicated by the composition dependence. The UC characteristics are evaluated in detail under consideration of the pump power dependence and Commission Internationale de L'Eclairage chromaticity. The spectroscopic features of Raman spectra are discussed in terms of the superposition of Ho3+ luminescence and vibrational lines. The possibility of controlling the spectral distribution of UC luminescence by the chemical content of tungstate hosts is demonstrated.

Keywords

References

  1. M. Wang, G. Abbineni, A. Clevenger, C. Mao, and S. Xu, Nanomedicine: Nanotechnol. Biol. Med., 7, 710 (2011). https://doi.org/10.1016/j.nano.2011.02.013
  2. M. V. DaCosta, S. Doughan, Y. Han and U. J. Krull, Anal. Chim. Acta, 832, 1 (2014). https://doi.org/10.1016/j.aca.2014.04.030
  3. M. Lin, Y. Zho, S. Q. Wang, M, Liu, Z. F. Duan, Y. M. Chen, F. Li, F. Xu and T. J. Lu, Biotechnol. Adv., 30, 1551 (2012). https://doi.org/10.1016/j.biotechadv.2012.04.009
  4. D. A. Ikonnikov, V. N. Voronov, M. S. Molokeev and A. S. Aleksandrovsky, Opt. Mater., 60, 584 (2016). https://doi.org/10.1016/j.optmat.2016.09.016
  5. P. O. Andreev, E. I. Sal'nikova, O. V. Andreev, Y. G. Denisenko and I. M. Kovenskii, Inorg. Mater., 53, 200 (2017). https://doi.org/10.1134/S0020168517020029
  6. C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, Phys. Chem. Chem. Phys., 17, 19278 (2015). https://doi.org/10.1039/C5CP03054D
  7. C. S. Lim, Mater. Res. Bull., 75, 211 (2016). https://doi.org/10.1016/j.materresbull.2015.11.058
  8. L. Li, L. Liu, W. Zi, H. Yu, S. Gan, G. Ji, H. Zou and X. Xu, J. Lumin., 143, 14 (2013). https://doi.org/10.1016/j.jlumin.2013.04.031
  9. C. Ming, F. Song and L. Yan, Opt. Commun., 286, 217 (2013). https://doi.org/10.1016/j.optcom.2012.08.095
  10. N. Xue, X. Fan, Z. Wang and M. Wang, J. Phys. Chem. Solids, 69, 1891 (2008). https://doi.org/10.1016/j.jpcs.2008.01.015
  11. Z. Shan, D. Chen, Y. Yu, P. Huang, F. Weng, H. Lin and Y. Wang, Mater. Res. Bull., 45, 1017 (2010). https://doi.org/10.1016/j.materresbull.2010.04.004
  12. W. Liu, J. Sun, X. Li, J. Zhang, Y. Tian, S. Fu, H. Zhong, T. Liu, L. Cheng, H. Zhong, H. Xia, B. Dong, R. Hua, X. Zhang and B. Chen, Opt. Mater., 35, 1487 (2013). https://doi.org/10.1016/j.optmat.2013.03.008
  13. C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, J. Alloys Compd., 695, 737 (2017). https://doi.org/10.1016/j.jallcom.2016.06.134
  14. H. Du, Y. Lan, Z. Zhiguo and J. Sun, J. Rare Earths, 28, 697 (2010). https://doi.org/10.1016/S1002-0721(09)60182-4
  15. X. Yu, Y. Qin, M. Gao, L. Duan, Z. Jiang, L. Gou, P. Zhao and Z. Li, J. Lumin., 153, 1 (2014). https://doi.org/10.1016/j.jlumin.2014.02.033
  16. D. Thangaraju, A. Durairajan, D. Balaji and S. M. Babu, Opt. Mater., 35, 753 (2013). https://doi.org/10.1016/j.optmat.2012.09.018
  17. L. Macalik, P.E. Tomaszewski, R. Lisiecki and J. Hanuza, J. Solid State Chem., 181, 2591 (2008). https://doi.org/10.1016/j.jssc.2008.06.026
  18. C. S. Lim, Ceram. Inter., 41, 2616 (2015). https://doi.org/10.1016/j.ceramint.2014.10.042
  19. C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, J. Am. Ceram. Soc., 98, 3223 (2015). https://doi.org/10.1111/jace.13739
  20. C. Lugli, L. Medici and D. Saccardo, Neues Jahrbuchfuer Mineral. Monatshefte, 6, 281 (1999).
  21. R. D. Shannon, Acta Crystallogr., Sect. A: Found. Adv., 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
  22. C. S. Lim, A, Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, Mater. Lett., 181, 38 (2016). https://doi.org/10.1016/j.matlet.2016.05.121
  23. Y. Bai, Y. Wang, K. Yang, X. Zhang, Y. Song and C. H. Wang, Opt. Commun., 281, 5448 (2008). https://doi.org/10.1016/j.optcom.2008.07.041
  24. H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou and S. Xia, J. Phys. Chem. B, 108, 19205 (2004). https://doi.org/10.1021/jp048072q
  25. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, 6th ed., p. 432, Wiley, New York (2009).
  26. D. Kasprowicz, T. Runka, A. Majchrowski and E. Michalski, J. Phys. Chem. Solids, 70, 1242 (2009). https://doi.org/10.1016/j.jpcs.2009.07.015
  27. J. Suda, P. G. Zverev, Crystals, 9, 197 (2019). https://doi.org/10.3390/cryst9040197
  28. C. S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov and V. Atuchin, J. Solid State Chem., 228, 160 (2015). https://doi.org/10.1016/j.jssc.2015.04.032