• Title/Summary/Keyword: Optical and structural properties

Search Result 931, Processing Time 0.032 seconds

Electrical and Structural Properties of $CuInS_2$ thin films fabricated by EBE(Electronic Beam Evaporator) Method (전자빔 증착기로 증착된 $CuInS_2$ 박막의 전기적 구조적 특성)

  • Yang, Hyeon-Hun;Kim, Young-Jun;Jeong, Woon-Jo;Park, Gye-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.170-173
    • /
    • 2006
  • [ $CuInS_2$ ] filims were appeared from 0.84 to 1.27 of Cu/In composition ratio and sulfur composition ratios of $CuInS_2$ thin films fabricated, Also when Cu/In composition ratio was 1.03, $CuInS_2$ thin film with chalcopyrite structure had the highest XRD peak (112). And lattice constant (a) of and grain size of the film tin s ambient were appeared a little larger than those in only Vacuum The films in S ambient were p-type with resistive of around $10^{-1}{\Omega}cm$ and optical energy band gaps of the films in S ambient were appeared a little larger than those in only Vacuum. Analysis of the optical energy band gap of $CuInS_2$ thin films a value of 1.53eV.

  • PDF

Influence of growth Temperature on the Formation of 10 monolayer-thick InGaAs Quantum dots formed with 5 repetitions of 1 monolayer-thick InAs and 1 monolayer-thick GaAs

  • Song, J.D.;Han, I.K.;Choi, W.J.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.254-256
    • /
    • 2015
  • Effect of growth temperature ($T_g$) on the structural and optical properties of $In_{0.5}Ga_{0.5}As$ atomic layer epitaxial (ALE) quantum dots (QDs) is investigated in the range of $T_g=480-510^{\circ}C$. $In_{0.5}Ga_{0.5}As$ ALE QDs consist of 5 periods of short-period superlattices (SPSs) of 1 monolayer-thick InAs and GaAs. Number of coalescent QDs decreases as $T_g$ increases, and they disappear at $T_g=510^{\circ}C$. As $T_g$ increases in the range of $480-495^{\circ}C$, sizes of QDs increase, and densities of QDs decrease due to merge of QDs. On the contrary, although sizes of QDs are maintained at $T_g=495-510^{\circ}C$, densities of QDs decrease. This is attributed to the desorption of material-mainly indium-during the growth interruption. This conjecture is supported by the optical properties of the QDs as a function of $T_g$. As a result, we propose that optimum growth temperature of the QD is $495^{\circ}C$ with less repetition of SPSs than 5.

Effect of Li-Incorporation on the Properties of ZnO Thin Films Deposited by Ultrasonic-Assisted Spray Pyrolysis Deposition Method (초음파 분무 열분해법에 의해 성장된 ZnO 박막의 특성에 미치는 Li 첨가의 영향)

  • Han, In Sub;Park, Il-Kyu
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • Li-incorporated ZnO thin films were deposited by using ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of Li-incorporation on the performance of ZnO thin films, the structural, electrical, and optical properites of the ZnO thin films were analyzed by means of X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), Hall effect measurement, and UV-Vis spectrophotometry with variation of the Li concentraion in the ZnO sources. Without incorporation of Li element, the ZnO surface showed large spiral domains. As the Li content increases, the size of spiral domains decreased gradually, and finally formed mixed small grain and one-dimensional nanorod-like structures on the surface. This morphological evolution was explained based on an anti-surfactant effect of Li atoms on the ZnO growth surface. In addition, the Li-incorporation changed the optical and electrical properties of the ZnO thin films by modifying the crystalline defect structures by doping effects.

Analysis of Sputter-Deposited SnO thin Film with SnO/Sn Composite Target (SnO/Sn 혼합 타겟을 이용한 SnO 박막 제조 및 특성)

  • Kim, Cheol;Kim, Sungdong;Kim, Sarah Eunkyung
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.222-227
    • /
    • 2016
  • Tin oxides have been studied for various applications such as gas detecting materials, transparent electrodes, transparent devices, and solar cells. p-type SnO is a promising transparent oxide semiconductor because of its high optical transparency and excellent electrical properties. In this study, we fabricated p-type SnO thin film using rf magnetron sputtering with an SnO/Sn composite target; we examined the effects of various oxygen flow rates on the SnO thin films. We fundamentally investigated the structural, optical, and electrical properties of the p-type SnO thin films utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis spectrometry, and Hall Effect measurement. A p-type SnO thin film of $P_{O2}=3%$ was obtained with > 80% transmittance, carrier concentration of $1.12{\times}10^{18}cm^{-3}$, and mobility of $1.18cm^2V^{-1}s^{-1}$. With increasing of the oxygen partial pressure, electrical conductivity transition from p-type to n-type was observed in the SnO crystal structure.

Change of Anti-reflective Optical Property by Nano-structural Control of Alumina Layer through Hydro-thermal Process (수열합성 공정을 통한 알루미나 코팅층의 나노구조 조절에 의한 반사방지 특성의 변화)

  • Lee, Yun-Yi;Son, Dae-Hee;Lee, Seung-Ho;Lee, Gun-Dae;Hong, Seong-Soo;Park, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.564-569
    • /
    • 2010
  • Highly anti-reflective optical property has been focussed in the field of thin film and display because of increasing demands to the high transparency and clearness of optical component. In this study, to obtain anti-reflective property, the formation of aluminium oxide with nanoscaled flowerlike frame structure was introduced as oxide material monolayer on the substrate by hydrothermal synthesis through sol-gel method. The properties of coating layer were measured by the means of UV-Vis spectroscopy, FT-IR spectroscopy, XRD, and FE-SEM. The morphology of coating layer in alumina-sol coated samples was controlled by hydrothermal temperature and time with aid of ultrasound. It was found that high transparency and anti-reflective optical properties were obtained the formation of flowerlike nanoframe structure.

Variation of the Nanostructural and Optical Features of Porous Silicon with pH Conditions (pH 조건에 따른 기공성 실리콘의 나노구조 및 광학적 특성의 변화)

  • Kim, Hyo-Han;Cho, Nam-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.294-300
    • /
    • 2013
  • The effect of chemical treatments of porous silicon in organic solvents on its nanostructural and optical features was investigated. When the porous Si was dipped in the organic solvent with various PH values, the morphological, chemical, and structural properties of the porous silicon was sensitively affected by the chemical conditions of the solvents. The size of silicon nanocrystallites in the porous silicon decreased from 5.4 to 3.1 nm with increasing pH values from 1 to 14. After the samples were dipped in the organic solvents, the Si-O-H bonding intensity was increased while that of Si-H bonding decreased. Photoluminescence peaks shifted to a shorter wavelength region in the range of 583 to 735 nm as the pH value increased. PL intensity was affected by the size as well as the volume fraction of the nanocrystalline silicon in the porous silicon.

Highly Birefringent Slotted-porous-core Photonic Crystal Fiber with Elliptical-hole Cladding for Terahertz Applications

  • Lee, Yong Soo;Kim, Soeun;Oh, Kyunghwan
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 2022
  • We propose a photonic crystal fiber (PCF) with a slotted porous core and elliptical-hole cladding, for high birefringence in the terahertz regime. Asymmetry in the guided mode is obtained mainly by using arrays of elliptical air holes in the TOPAS® polymer cladding. We investigate the tradeoff between several structural parameters and find optimized values that can have a high birefringence while satisfying the single-mode condition. The optical properties in the terahertz regime are thoroughly analyzed in numerical simulations, using a full-vector finite-element method with the perfectly-matched-layer condition. In an optimal design, the proposed photonic crystal fiber shows a high birefringence of 8.80 × 10-2 and an effective material loss of 0.07 cm-1 at a frequency of 1 THz, satisfying the single-mode-guidance condition at the same time. The proposed PCF would be useful for various polarization-management applications in the terahertz range.

Effects of Deposition Thickness and Oxygen Introduction Flow Rate on Electrical and Optical Properties of IZO Films (증착두께 및 산소도입속도가 IZO 필름의 전기 및 광학적 특성에 미치는 영향)

  • Park, Sung-Hwan;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.224-229
    • /
    • 2010
  • Transparent conductive oxide films have been widely used in the field of flat panel display (FPD). Transparent conductive Indium Zinc Oxide (IZO) thin films with excellent chemical stability have attracted much attention as an alternative material for Indium Tin Oxide (ITO) films. In this study, using $In_2O_3$ and ZnO powder mixture with a ratio of 90 : 10 wt% as a target, IZO films are prepared on polynorbornene (PNB) substrates by electron beam evaporation. The effect of thickness and $O_2$ introduction flow rate on the optical, electrical, structural properties and surface composition of deposited IZO films were investigated by UV/Visible spectrophotometer, 4-point probe method, SEM, XRD and XPS.

Properties of the ZnS Thin Film Buffer Layer by Chemical Bath Deposition Process with Different Solution Concentrations and Deposition Time (화학습식공정법을 이용한 용액 농도 및 시간에 따른 ZnS 완충층 특성에 대한 분석)

  • Son, Kyeongtae;Kim, Jongwan;Kim, Minyoung;Shin, Junchul;Jo, Sunghee;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.269-275
    • /
    • 2014
  • In this study, chemical bath deposition method was used to grow Zinc sulfide(ZnS) thin films from $NH_3/SC(NH_2)_2/ZnSO_4$ solutions at $90^{\circ}C$. ZnS thin films have been prepared onto ITO glass. The concentrations of $ZnSO_4$ and $NH_3$ were varied while the concentration of Thiourea was fixed in 0.52 M. Structural, optical, electrical characteristic of ZnS thin films were measured. The physical and optical properties of different ZnS thin films were influenced severely by the concentration of the two reacting chemicals. The optimal concentration of $ZnSO_4$ and $NH_3$ was 0.085 M and 1.6 M, respectively.

Characterization of transparent ATO conducting films prepared by RF magnetron sputtering (RF 마그네트론 스퍼터링 법에 의한 ATO 투명전도막의 특성)

  • Lee, Sung-Uk;Park, Yong-Seob;Hong, Byung-You
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.2
    • /
    • pp.76-80
    • /
    • 2008
  • In this study, we synthesized ATO films using RF magnetron sputtering method consisted of $SnO_2$ target added Sb of 6 wt% and investigated the effect of $O_2$ on structural, electrical, and optical properties of ATO films. As a result, in case of $O_2$/Ar ratio of 0.11, we obtained ATO films exhibit the properties such as the resistivity about $8{\times}10^{-3}[{\Omega}-cm]$, the transmittance of 85.17%, and retile structure.