• Title/Summary/Keyword: Operator norm

Search Result 104, Processing Time 0.025 seconds

ASYMPTOTIC-NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL DIFFERENCE EQUATIONS OF MIXED-TYPE

  • SALAMA, A.A.;AL-AMERY, D.G.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.485-502
    • /
    • 2015
  • A computational method for solving singularly perturbed boundary value problem of differential equation with shift arguments of mixed type is presented. When shift arguments are sufficiently small (o(ε)), most of the existing method in the literature used Taylor's expansion to approximate the shift term. This procedure may lead to a bad approximation when the delay argument is of O(ε). The main idea for this work is to deal with constant shift arguments, which are independent of ε. In the present method, we construct the formally asymptotic solution of the problem using the method of composite expansion. The reduced problem is solved numerically by using operator compact implicit method, and the second problem is solved analytically. Error estimate is derived by using the maximum norm. Numerical examples are provided to support the theoretical results and to show the efficiency of the proposed method.

A NOTE ON ∗-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS

  • Tanahashi, Kotoro;Uchiyama, Atsushi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.357-371
    • /
    • 2014
  • We shall show that the Riesz idempotent $E_{\lambda}$ of every *-paranormal operator T on a complex Hilbert space H with respect to each isolated point ${\lambda}$ of its spectrum ${\sigma}(T)$ is self-adjoint and satisfies $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$. Moreover, Weyl's theorem holds for *-paranormal operators and more general for operators T satisfying the norm condition $||Tx||^n{\leq}||T^nx||\,||x||^{n-1}$ for all $x{\in}\mathcal{H}$. Finally, for this more general class of operators we find a sufficient condition such that $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$ holds.

ENERGY FINITE SOLUTIONS OF ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS

  • Kim, Seok-Woo;Lee, Yong-Hah
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.807-819
    • /
    • 2008
  • We prove that for any continuous function f on the s-harmonic (1{\infty})$ boundary of a complete Riemannian manifold M, there exists a solution, which is a limit of a sequence of bounded energy finite solutions in the sense of supremum norm, for a certain elliptic operator A on M whose boundary value at each s-harmonic boundary point coincides with that of f. If $E_1,\;E_2,...,E_{\iota}$ are s-nonparabolic ends of M, then we also prove that there is a one to one correspondence between the set of bounded energy finite solutions for A on M and the Cartesian product of the sets of bounded energy finite solutions for A on $E_i$ which vanish at the boundary ${\partial}E_{\iota}\;for\;{\iota}=1,2,...,{\iota}$

Estimation of Hysteretic Behaviors of a Seismic Isolator Using a Regularized Output Error Estimator (정규화된 OEE를 이용한 지진격리장치의 이력거동 추정)

  • 박현우;전영선;서정문
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.85-92
    • /
    • 2003
  • Hysteretic behaviors of a seismic isolator are identified by using the regularized output error estimator (OEE) based on the secant stiffness model. A proper regularity condition of tangent stiffness for the current OEE is proposed considering the regularity condition of Duhem hysteretic operator. The proposed regularity condition is defined by 12-norm of the tangent stiffness with respect to time. The secant stiffness model for the OEE is obtained by approximating the tangent stiffness under the proposed regularity condition by the secant stiffness at each time step. A least square method is employed to minimize the difference between the calculated response and measured response for the OEE. The regularity condition of the secant stiffness is utilized to alleviate ill-posedness of the OEE and to yield numerically stable solutions through the regularization technique. An optimal regularization factor determined by geometric mean scheme (GMS) is used to yield appropriate regularization effects on the OEE.

  • PDF

LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION

  • Thuy, Le Thi;Tinh, Le Tran
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1365-1388
    • /
    • 2019
  • In this paper we consider a class of nonlinear nonlocal parabolic equations involving p-Laplacian operator where the nonlocal quantity is present in the diffusion coefficient which depends on $L^p$-norm of the gradient and the nonlinear term is of polynomial type. We first prove the existence and uniqueness of weak solutions by combining the compactness method and the monotonicity method. Then we study the existence of global attractors in various spaces for the continuous semigroup generated by the problem. Finally, we investigate the existence and exponential stability of weak stationary solutions to the problem.

OUTER APPROXIMATION METHOD FOR ZEROS OF SUM OF MONOTONE OPERATORS AND FIXED POINT PROBLEMS IN BANACH SPACES

  • Abass, Hammad Anuoluwapo;Mebawondu, Akindele Adebayo;Narain, Ojen Kumar;Kim, Jong Kyu
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.451-474
    • /
    • 2021
  • In this paper, we investigate a hybrid algorithm for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators which is also a common fixed point problem for finite family of relatively quasi-nonexpansive mappings and split feasibility problem in uniformly convex real Banach spaces which are also uniformly smooth. The iterative algorithm employed in this paper is design in such a way that it does not require prior knowledge of operator norm. We prove a strong convergence result for approximating the solutions of the aforementioned problems and give applications of our main result to minimization problem and convexly constrained linear inverse problem.

BACH ALMOST SOLITONS IN PARASASAKIAN GEOMETRY

  • Uday Chand De;Gopal Ghosh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.763-774
    • /
    • 2023
  • If a paraSasakian manifold of dimension (2n + 1) represents Bach almost solitons, then the Bach tensor is a scalar multiple of the metric tensor and the manifold is of constant scalar curvature. Additionally it is shown that the Ricci operator of the metric g has a constant norm. Next, we characterize 3-dimensional paraSasakian manifolds admitting Bach almost solitons and it is proven that if a 3-dimensional paraSasakian manifold admits Bach almost solitons, then the manifold is of constant scalar curvature. Moreover, in dimension 3 the Bach almost solitons are steady if r = -6; shrinking if r > -6; expanding if r < -6.

STUDY OF YOUNG INEQUALITIES FOR MATRICES

  • M. AL-HAWARI;W. GHARAIBEH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.6
    • /
    • pp.1181-1191
    • /
    • 2023
  • This paper investigates Young inequalities for matrices, a problem closely linked to operator theory, mathematical physics, and the arithmetic-geometric mean inequality. By obtaining new inequalities for unitarily invariant norms, we aim to derive a fresh Young inequality specifically designed for matrices.To lay the foundation for our study, we provide an overview of basic notation related to matrices. Additionally, we review previous advancements made by researchers in the field, focusing on Young improvements.Building upon this existing knowledge, we present several new enhancements of the classical Young inequality for nonnegative real numbers. Furthermore, we establish a matrix version of these improvements, tailored to the specific characteristics of matrices. Through our research, we contribute to a deeper understanding of Young inequalities in the context of matrices.

A TECHNIQUE WITH DIMINISHING AND NON-SUMMABLE STEP-SIZE FOR MONOTONE INCLUSION PROBLEMS IN BANACH SPACES

  • Abubakar Adamu;Dilber Uzun Ozsahin;Abdulkarim Hassan Ibrahim;Pongsakorn Sunthrayuth
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.1051-1067
    • /
    • 2023
  • In this paper, an algorithm for approximating zeros of sum of three monotone operators is introduced and its convergence properties are studied in the setting of 2-uniformly convex and uniformly smooth Banach spaces. Unlike the existing algorithms whose step-sizes usually depend on the knowledge of the operator norm or Lipschitz constant, a nice feature of the proposed algorithm is the fact that it requires only a diminishing and non-summable step-size to obtain strong convergence of the iterates to a solution of the problem. Finally, the proposed algorithm is implemented in the setting of a classical Banach space to support the theory established.

A Spatially Adaptive Post-processing Filter to Remove Blocking Artifacts of H.264 Video Coding Standard (H.264 동영상 표준 부호화 방식의 블록화 현상 제거를 위한 적응적 후처리 기법)

  • Choi, Kwon-Yul;Hong, Min-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.583-590
    • /
    • 2008
  • In this paper, we present a spatially adaptive post-processing algorithm for H.264 video coding standard to remove blocking artifacts. The loop filter of H.264 increases computational complexity of the encoder. Furthermore it doesn't clearly remove the blocking artifacts, resulting in over-blurring. For overcoming them, we combine the projection method with the Constraint Least Squares(CLS) method to restore the high quality image. To reflect the Human Visual System, we adopt the weight norm CLS method. Particularly pixel location-based local variance and laplacian operator are newly defined for the CLS method. In addition, the fact that correlation among adjoining pixels is high is utilized to constrain the solution space when the projection method is applied. Quantization Index(QP) of H.264 is also used to control the degree of smoothness. The simulation results show that the proposed post-processing filter works better than the loop filter of H.264 and converges more quickly than the CLS method.