• Title/Summary/Keyword: Operator inequalities

Search Result 130, Processing Time 0.026 seconds

ON SOME WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING EXTENDED RIEMANN-LIOUVILLE FRACTIONAL CALCULUS OPERATORS

  • Iqbal, Sajid;Pecaric, Josip;Samraiz, Muhammad;Tehmeena, Hassan;Tomovski, Zivorad
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.161-184
    • /
    • 2020
  • In this article, we establish some new weighted Hardy-type inequalities involving some variants of extended Riemann-Liouville fractional derivative operators, using convex and increasing functions. As special cases of the main results, we obtain the results of [18,19]. We also prove the boundedness of the k-fractional integral operator on Lp[a, b].

UNITARILY INVARIANT NORM INEQUALITIES INVOLVING G1 OPERATORS

  • Bakherad, Mojtaba
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.889-899
    • /
    • 2018
  • In this paper, we present some upper bounds for unitarily invariant norms inequalities. Among other inequalities, we show some upper bounds for the Hilbert-Schmidt norm. In particular, we prove $${\parallel}f(A)Xg(B){\pm}g(B)Xf(A){\parallel}_2{\leq}{\Large{\parallel}}{\frac{(I+{\mid}A{\mid})X(I+{\mid}B{\mid})+(I+{\mid}B{\mid})X(I+{\mid}A{\mid})}{^dA^dB}}{\Large{\parallel}}_2$$, where A, B, $X{\in}{\mathbb{M}}_n$ such that A, B are Hermitian with ${\sigma}(A){\cup}{\sigma}(B){\subset}{\mathbb{D}}$ and f, g are analytic on the complex unit disk ${\mathbb{D}}$, g(0) = f(0) = 1, Re(f) > 0 and Re(g) > 0.

On the Paneitz-Branson Operator in Manifolds with Negative Yamabe Constant

  • Ali, Zouaoui
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.751-767
    • /
    • 2022
  • This paper deals with the Paneitz-Branson operator in compact Riemannian manifolds with negative Yamabe invariant. We start off by providing a new criterion for the positivity of the Paneitz-Branson operator when the Yamabe invariant of the manifold is negative. Another result stated in this paper is about the existence of a metric on a manifold of dimension 5 such that the Paneitz-Branson operator has multiple negative eigenvalues. Finally, we provide new inequalities related to the upper bound of the mean value of the Q-curvature.

A VISCOSITY TYPE PROJECTION METHOD FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES

  • Muangchoo, Kanikar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.347-371
    • /
    • 2021
  • A plethora of applications from mathematical programmings, such as minimax, mathematical programming, penalization and fixed point problems can be framed as variational inequality problems. Most of the methods that used to solve such problems involve iterative methods, that is why, in this paper, we introduce a new extragradient-like method to solve pseudomonotone variational inequalities in a real Hilbert space. The proposed method has the advantage of a variable step size rule that is updated for each iteration based on previous iterations. The main advantage of this method is that it operates without the previous knowledge of the Lipschitz constants of an operator. A strong convergence theorem for the proposed method is proved by letting the mild conditions on an operator 𝒢. Numerical experiments have been studied in order to validate the numerical performance of the proposed method and to compare it with existing methods.

ON STRONG CONVERGENCE THEOREMS FOR A VISCOSITY-TYPE TSENG'S EXTRAGRADIENT METHODS SOLVING QUASIMONOTONE VARIATIONAL INEQUALITIES

  • Wairojjana, Nopparat;Pholasa, Nattawut;Pakkaranang, Nuttapol
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.381-403
    • /
    • 2022
  • The main goal of this research is to solve variational inequalities involving quasimonotone operators in infinite-dimensional real Hilbert spaces numerically. The main advantage of these iterative schemes is the ease with which step size rules can be designed based on an operator explanation rather than the Lipschitz constant or another line search method. The proposed iterative schemes use a monotone and non-monotone step size strategy based on mapping (operator) knowledge as a replacement for the Lipschitz constant or another line search method. The strong convergences have been demonstrated to correspond well to the proposed methods and to settle certain control specification conditions. Finally, we propose some numerical experiments to assess the effectiveness and influence of iterative methods.

A NOTE ON THE GENERALIZED VARIATIONAL INEQUALITY WITH OPERATOR SOLUTIONS

  • Kum, Sangho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.319-324
    • /
    • 2009
  • In a series of papers [3, 4, 5], the author developed the generalized vector variational inequality with operator solutions (in short, GOVVI) by exploiting variational inequalities with operator solutions (in short, OVVI) due to Domokos and $Kolumb\acute{a}n$ [2]. In this note, we give an extension of the previous work [4] in the setting of Hausdorff locally convex spaces. To be more specific, we present an existence of solutions of (GVVI) under the weak pseudomonotonicity introduced in Yu and Yao [7] within the framework of (GOVVI).

  • PDF

Certain Inequalities Involving Pathway Fractional Integral Operators

  • Choi, Junesang;Agarwal, Praveen
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1161-1168
    • /
    • 2016
  • Belarbi and Dahmani [3], recently, using the Riemann-Liouville fractional integral, presented some interesting integral inequalities for the Chebyshev functional in the case of two synchronous functions. Subsequently, Dahmani et al. [5] and Sulaiman [17], provided some fractional integral inequalities. Here, motivated essentially by Belarbi and Dahmani's work [3], we aim at establishing certain (presumably) new inequalities associated with pathway fractional integral operators by using synchronous functions which are involved in the Chebychev functional. Relevant connections of the results presented here with those involving Riemann-Liouville fractional integrals are also pointed out.