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INEQUALITIES FOR VECTOR-VALUED
MAXIMAL FUNCTIONS OVER LOCALLY
COMPACT VILENKIN GROUPS

LAN SENHUA AND LIU LANZHE

ABSTRACT. In this paper, some inequalities for vector-valued max-
imal functions over locally compact Vienkin groups are obtained.

1. Introduction

On Euclidean space R™, Fefferinan-Stein [2] obtained the following
well-known inequalities for vector-valued maximal functions:

THEOREM ([2]). Let 1 < r < oo, f = {fi}i2, be a sequence of
locally integrable functions on R™, M(f) = {M(fx)}32, and |f(z)|, =

(3320 fk(@)[M)Y7. Then
(1) fgn IM(f)(z)|}de < Crg [z, | f(x)|}dz, where 1 < ¢ < o0 and Cy
is a constant which only depends on r and g;
(i) Hz € R* : [M(f)(@)lr > a}| < Cra™! [5. |f(z)|rdz, for any
a > 0, where C,. is a constant which only depends on 7.

In this paper, we will establish some similar inequalities over locally
compact Vilenkin groups. Furthermore, the relative inequalities on Herz
spaces are also considered. First, let us introduce some definitions and
notations.

Throughout this paper, we will denote by & a locally compact Abelian
group containing a strictly decreasing sequence of compact open sub-
groups {Gp}a2 _ such that UX__ G, = G, N%2__ G, = {0} and

sup{order(Gn/Gn+1) : n € Z} := B < oo. Let I' denote the dual
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group of G and for each n € Z, let I'y, = {y € T : v(z) = 1 for all
z € Gp}. Then {I',}52 _ is a strictly increasing sequence of open com-
pact subgroups of such that U2 _ I, =T, N3 _ I'n = {1}, and order
(Tnt+1/Tr) = order(Gy/Gpn+1). We choose Haar measure dx (or du) on
G and dvy on I so that |Gg| = |Tg| = 1, where |A| denotes the Haar mea-~
sure of a measurable subset A of G, or I'. Then |G,|™! = |T| := m,
for each n € Z. Since 2m, < myy; < Bm, for each n € Z, it follows
that > 00, (my)™® < C(my)~* and Zk:_oo(mn)" < C(mg)® for any
a > 0,k € Z. If we define the function d : G x G — R by d(z,y) =0
when ¢ —y = 0 and d(z,y) = (m,)~! when z —y € Gy \ Gpy1, then
d defines a metric on G x GG and the topology on G induced by this
metric is the same as the original topology on G. For x € G, we set
|z| = d(z,0). For more details about G, see [1], [3-6].

DEFINITION 1. The Hardy-Littlewood maximal operator M is de-
fined by

M f(x) =Supmn/ |f (y)|dy.
nez z4+Gp

M is of strong type (LP, LP)(1 < p < oc) and of weak type (L', L!) (see

B)-

DEFINITION 2 ([1]). Let « € R and 0 < p,¢ < o0.
a) The homogeneous Herz spaces K;'P(G) are defined by
q
KgP(G)
= {f : f is a measurable function on G and Hf”f(g"’(c) < oo},

where
> —ap p i/p
ke ={ D ™ PNixencifae ) -
l=—00
(b) The non-homogeneous Herz spaces K" (G) are defined by
Kg7(@)
= {f : f is a measurable function on G and ||f||xa»(g) < oo},
where

—! _ 1/p
”f”K;’*”(G) = {”fXGo”gq(G) + Z m, aprXG,\GHIHIJiq(G)}

l=—o0
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DEFINITION 3 ([7]). Let a € R, 0 < g < o0 and 0 < p < 0.
(a) A measurable function f(z) on G is said to belong to the homo-
geneous weak Herz space W K3 ?(G) if

o' . 1/
U lw ko) = il;;g) )\{ k;oc m, P[Dk()\,f)]p/q} P < o0,

where Di(), f) = {z € G\ Gigs1 = |f(z)] > A}, and the usual
modification is made when p = oc.
(b) A measurable function f(z) on G is said to belong to the non-
homogeneous weak Herz space W Kg"P(G) if
i/p
1£llw gy = bupx{ Z my D AP} < oo,

where for k € {~1,-2,---}, De(\, f) = Dip(\ ), Do(\ f) =
{z € Go : [f(z)] > A}|, and the usual modification is made when
P = 00.

2. Inequalities for vector-valued maximal functions on
Lebesgue spaces

THEOREM 1. Let 1l < r < =, f =
cally integrable functions on G. M (f)

(o2 fu(z)[")/". Then
(1) /IM lqd1<C’Tq/ |f(z)|4dz,

where 1 < ¢ < o0, and C,., is a constant only depending on r and g;
and

(2) e € G [M(f)@)l > a}| < Cra™? /G 1 (@)lrdz

where C, is a constant only depending on 7.

}22, be a sequence of lo-

{fe
= { fk }k 1 and lf )lr =

Proof. We consider three cascs: g =7, g<rand g>r.

Case I: ¢ = r. The L"-boundedness of M immediately implies in-
equality (1). For @ > 0 and the function |f(z)], = O p 1[fk(x)lr)1/r
applying the Calderén-Zygmund decomposition theorem [6, Lemma 2],
we obtain a collection {I; : I; = y; + Gpj),y; € G,n(j) € Z} of pair-
wise disjoint sets in G satisfying the following properties: (a) > [[;| <

J
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SIf |1/l (b) 1f @) < aif o & Q= UL (¢) a < by [y 1FW)lrdy <

j
Ca for each I;. Then we can decompose fi as fr, = fi + fi, where
fi = fr - xo\@ and f = fi - xq. Since

(éwfk(x)r)” "< (g asiar) "+ (g aspar)”
@  |{sec: (gle,:(mw)”’ >a}| < Zl 171
and —
@  |eeo: (éle;@’(x)l")”’ > o} < Sl

First, let us prove (3). From the inequality (b) and the obvious fact that

(o) || <1,
k=1

we see
(S 156r) 1] < 1.
k=1

Therefore, by the easy case p = r of inequality (1),
,

(S mron) | < all(Simor)”|
k=1 k=1

< Crar—IH Lflrl]1-

This immediately yields inequality (3) by the Chebyshev inequality.
To prove (4), we define the function fx by setting
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For = € I;, by the vector-valued form of Minkowski’s inequality and the
inequality (c), we have

(if Y= ( \m/‘f’" ey )

~ - 1/r
For z ¢ Q, all f are zero, so (Z:‘;l ]f;\(m)lr) = 0. Thus the function

- 1/r
(Zf‘;l ] fk(-)[’”) supports in €2 and is bounded by A, which implies
that

H(i lfk(’)lr)l/rH: < Ca’ Q] < Ca" Y| £l

As in the proof of (3), we now lLave that, by the case p = r of (1) and
the Chebyshev inequality,

6 |feeo: (i) >} < Ei i
k=1

For any set I = y+ G, let I= y+Ghy_g, and Q= UI.J Obviously, IQI <
J

c|i < %[l [fhll1. Therefore, to prove the weak type inequality (2), we

only need to prove that M f/'(2:) < CM fi(z) for any = ¢ Q. In fact,

M fil{(z) ~ bup { 1 fI Ly u)}dy}, and for any fixed coset I containing

|1|/|f )ldy = [HZ/ £ (v)ldy,

where J = {§]I; NI # 0}. On the other hand, ;NI #@andz € [-Q C
I — I; imply that I; C . In fact, let I, = = + Gpy, and I =y + Gp,.
Iinl#0 implieb that [y1 ya| < mmler andz € [— I implies that
lz—y1] > my, o > 4my]. Since lz—-y1| <z —yol+]y1 — U2| < 2m.], we
have 27rf1 < mn) For dnyy el ly—yl <ly— y11+lyr:rl+laf ya| <

3m ‘1 —I—m_l < 4m‘1 <m, =, and thus y € y2 + Gn,_2 = I. It follows

Z,

TL)
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that I; C I Therefore,

mzl mZ/” iy

jeJ jeJ

- [, Viwlay

JEJ
sm[m@m

IIl/lfk )dy

< CMfi(z

We conclude that for z € G — Q, \Il [ 1f1()ldy < CM fi(z) holds for

any I containing x, which implies that M fiz) < CM fe(z). Thus,
inequality (2) holds.

Case II: g < r. Inequality (1) is a simple consequence of the case
p = r, the inequality (2) and the Marcinkiewicz interpolation theorem.
Thus, to prove Theorem 1, we have only to demonstrate case ¢ > r in
(1). To do this, first let us prove the following lemma.

LEMMA 1. Let f and ¢ be positive real-valued functions on G. Then
forr > 1,

Jus@y @i < [ 1@rmos)is
G G
with C, depending only on r.

Proof. Fix ¢ and consider the mapping M : f — M f. Clearly, M
is bounded from L*®°(G, M¢(z)dzx) to L*(G, ¢(z)dx). If we can show
that M is of weak type (1.1), then the lemma will follow immediately
from the Marcinkiewicz interpolation theorem. Given f(z) and a >
0, the Calder6n-Zygmund decomposition theorem tells us that {z €
GIMf(z) > a} = U , where {I;} is a sequence of pairwise disjoint

cosets satisfying the condition a < |—1le [; If(z)[dz < Ca. Restricting
J
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attention to I; for a moment, we see that

/1 F(z)Me(z)ds

> [ J_ f(ac>{u—1j| / ol de

= [/1 qb(y)dy} |I_11|/I f(z)dz

SCoz-/[ ¢(y)dy.

J

Summing over j, we obtain

a | oly)dy < C f(x) M p(z)dz
{zeG\M f(z)>a} J{zeG|M f(z)>a}

< C | flx)Me(z)de.
JG
This finishes the proof of Lemma 1.

Let us now continue the proof of Theorem 1.
Case III: ¢ > r. By Lemma 1, we have

o

| (Xars@r)ew

k=1

- (M (2)) (z)do
>,
< c,.; /G ol M (z)dz

= ¢ [ (L) Mo

If in (6), letting ¢ take over the unit ball of LP(G)(1 < p < 00), by
duality theorem we obtain

[ SosOr
k=1 k=1

where 1/p+ 1/p’ = 1. Let p’ = ¢/r > 1, we then obtain
M (D)lllg < Crgll 1f1rlg-

S Cr’p
p/

P
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This finishes the proof of Theorem 1. d

3. Inequalities for vector-valued maximal functions on Herz
spaces

Recently, L. Tang and D. Yang studied the boundedness of vector-
valued operators on Herz spaces of R”. Now, we consider a similar
problem over locally compact Vilenkin groups.

THEOREM 2. Let 1 < r < oo, f = {fx}32, be a sequence of lo-
cally integrable functions on G, M(f) = {M(fx)}?2, and |f(z)|, =

(Zzil |fk(:n)|T)1/r. Then

@) 1l lM(f)|r||Kg'P(G) < O |f|r||1’<g"’(c) if -1/g < a < 1-1/q,
l<g<ooandO<p<l

i) 1 Il er-1amgy < Ol el gavian gy 1 < g < oo and
O<p<Ll.

Proof. Let us first prove (i). Suppose |f|, € K¢*P(G). Write x;(z) =
Xei\Gis1» Ci = Gi\ Git1, fi(z) = X fil@)xi(x) = X fi(z), and

i=—00 1=—00

, S 1/
|fH(z)|r = ( > (x)|r) ". Then by Minkowski’s inequality, we have
i=1

M (Dlelgor ()
- {k_z_wmﬂwg T
s {kiwmz“"lln[g( > ) e}
<o 3wl X o] o)

55 i
< of 3% mivo

k=—00 H

> [Zwr]”)

k+1  j=

1/
Ilzq(G)} ’

—
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1/
q(c)} '

S5 3] )}

i —oC J=

+C{ Z mk“P[[XA[ Mr(fk)}

rof 3 me

=E1+E2+E3,

where we denote [M(f)]" by M"(f) for simplicity.
For Ej, using (1) of Theorem 1, we have

B < ¢f i m;, P 1[5:1%(@’“)} v

k=—00 j=1

<cf i m,j“"H[i(fj"‘)’“]l/r

k=—o00 J=1

= Cll [flrllgerc)-

P }1/17
L(G)

P }l/p
L1(G)

405

For F4, noting that ¢ > k+ 1, x € C, 1 < r < 20, by the Minkowski

inequality, we have
o] <ol (o [ 1) ]
j=1 j=1
<o [ (Som)

Therefore, on the condition of & <1 —1/g and 0 < p < 1, we have

Ey

<of 35 m[ 35 i | (Snor) a)”

i=k+1

- c{ Z —fw{ Z my | if“'erLu(m(/ dz’)l/qlr}l/p

k=—cc i=k+1 Gi\Gi

<ol 30 mer[ S0 mi it ]}

k=—cc i=k+1
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<o 3o mpe Y m{ o lavey e A

k=—00 i=k+1

<C{ Z ( Z m(1 1/‘1)10 l/q 1)PH |f1| ” )}

k=—oc0 k=-—00

<o S meirn Y

k=—o0
=] |f|r”k3~l’(c)a
where 1/qg + 1/¢" = 1 and when 0 < p < 1 we used the well-known

o0 P o0
inequality: (Z |ai|> < 3 jaulP.
i=1 i=1

For Ej3, similar to Eq, when i <k—-1,z&Ck and 1 <r < oo, by
the Minkowski inequality, we have

S i) < o3 (4 [ wia)
Jj=1 ]:1
SCm1/<Z|f1(y ) ay.

Therefore, noting that o +1/¢ > 0 and 0 < p < 1, we have

l/r

Ey
00 Y k-1 1 g Z 1/.,_ U
k=—oo oo
o k1 | -
<o 3 mi[ 3 m T m |fz|rnLQ(G)] !
k=—o00 i=—00
< C{ i m;ap I§ mg’/q —p/q” Ile ||Lq(G)} 1/p
k=—o00 i=—o00
<o 3w £ Z iy
t=—00 =i+1
= cf 5w TN A
i=—00

= Ol |flrllgor(-
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(i) is proved.

Now we turn to prove (ii). For f € K,;*l/q’p(G), we write

H {Z Mr(fj)J UTHWKI e
= sup/\{ Z mlgl/q 1)1),{$6 Cy : [i ()@ ]1/r },p/q}l/p

k=—o00

<C’sup/\{ Z ml/q 1)p’

{IECk [ZMT( Z ]”) }l/r /\}‘P/q}l/p

i=k+1
+Csup)\{ Z mkl/q 1)p ‘

>0 b

(7 € Ce: @M'rmm} U ey

+Csup/\{ Z mkl/q 1)17!

A>0
{zea: [i”f”(g;.f})<x>}l/r > 2

For Fy, by Theorem 1, we have

F < C{ i mil// H(ka )l/r }1/]3
k=—o00

< Ol ifillgs

Gy’
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For Fi, noting that ¢ > k+ 1, z € C and 0 < p < 1, by Minkowski’s
inequality, we have

(S ( > p)e)”

IA IA IA
Q Q
3
e g 27
3 o I8
E
3
= = &
S 5~ =
S O

IN
Q
3
Ed
TN
Q
:*S
:fs
U
<
v
TN
—
U
<
g
—
~
0

i=k+1

o0 1 , .
< ¢ Y mm e

i=k+1

1 1 i lp
gwgzwmmvmw}
i=k+1

S ka“ |f|7‘”K‘;"1/Q~P(G)'

For F3, similar to Fy, we have

(5 )l

j=1 i=—00

1/r

-1
1/g—1 3
< ¢SmO o

i=—00

k—1
1/g—1 7
< ome > mM N e

i=—00

ka“ |f|r||k(}”‘/q»p(0)'

IA
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Thus, for any fixed A > 0, if

oo (55 )] > 2

i=k

or - .
(o P £ )l > 3 o
we have A\/3 < Cmy| |f|"|IKL} , and we can find a minimal integer

ky such that

l/‘l«l'(C;r)

mit S CAN eIy wvamgy-

Therefore when v = 1,3, we obtain

Csup)\{ i m(l/q_l)Pm—p/q}l/"
a>0 bl k k

< Csupmy, <C|[| |fl]]
A>0

e
A

Ry~ Gy

This finishes the proof of Theorem 2. O

REMARK. Theorem 2 also holds if we replace homogeneous Herz
spaces by non-homogeneous Herz spaces. Since the proof is similar, we
omit the details.
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