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Abstract. This paper deals with the Paneitz-Branson operator in compact Riemannian

manifolds with negative Yamabe invariant. We start off by providing a new criterion for

the positivity of the Paneitz-Branson operator when the Yamabe invariant of the manifold

is negative. Another result stated in this paper is about the existence of a metric on a

manifold of dimension 5 such that the Paneitz-Branson operator has multiple negative

eigenvalues. Finally, we provide new inequalities related to the upper bound of the mean

value of the Q-curvature.

1. Introduction

Let (M, g) be a smooth 4-dimensional Riemannian manifold. The Paneitz oper-
ator discovered in [18] is the fourth order operator defined for all smooth functions
u by

P 4
g (u) = ∆2

g(u)− divg

(

2

3
Scg.g − 2Ricg

)

du

where ∆g(u) = −divg(∇u) is the Laplacian of u with respect to the metric g, and
Scg and Ricg denote the scalar and the Ricci curvatures of g respectively (we will
use this notation throughout the paper).

This operator is conformally covariant in the following sense: if g̃ is e2ϕg where
ϕ is a smooth function, then the following holds

(1.1) P 4
g̃ (u) = e−4ϕP 4

g (u), ∀u ∈ C∞(M).

Moreover, this operator is intimately related to a conformally invariant Q4
g −

curvature

Q4
g :=

1

6

(

∆gScg − Sc2g − 3|Ricg|
2
)

.
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Originally the Paneitz operator was introduced for physical motivations and has
many applications in mathematical physics. This operator was generalized to man-
ifolds of greater dimension (n ≥ 5) by Branson.

Given a smooth compact Riemannian manifold (M, g) of dimension n ≥ 5, the
Paneitz-Branson operator is defined as

(1.2) Pn
g (u) = ∆2(u)− divg (anScg.g + bnRicg) du+

n− 4

2
Qgu

where

(1.3) an =
(n− 2)2 + 4

2(n− 1)(n− 2)
, bn =

−4

n− 2
, and

(1.4) Qg =
1

2(n− 1)
∆Scg +

n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2
Sc2g −

2

(n− 2)2
|Ricg|

2
g.

The Paneitz-Branson operator is also conformally covariant in this sense: if g̃ =

ϕ
4

n−4 g is a metric conformal to the metric g where ϕ is a smooth positive function,
then

(1.5) Pn
g (uϕ) = ϕ

n+4

n−4Pn
g̃ (u), ∀u ∈ C∞(M).

Of course, as an object in conformal geometry, a lot of research has been devoted
to this operator; see [9], [4], [14], [8], and [21], and the references therein.

Our aim in this paper is to investigate the influence of the geometry on the sign
of the eigenvalues of this operator. As a first result we give conditions sufficient to
ensure the positivity of the Paneitz-Branson operator even when the scalar curvature
is negative. In particular we prove the following.

Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5
with negative scalar curvature Scg not necessarily constant. If the following three

conditions hold

(1.6) −4
(n− 1)(n− 2)

n3 − 2n2 − 2n+ 8
< Scg

(1.7)
1

n
Scg.g ≤ Ricg ≤

1

2n
Scg.g

(1.8) Qg ≥
2

n(n− 4)

then the Paneitz-Branson operator Pn
g is positive.
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The proof of this theorem is based on a new inequality which we give in the
next section. Observe that in this theorem we allow the Yamabe constant of M to
be negative (for the definition of the Yamabe constant one can see Section 4). Now,
we give an outline of the rest of the paper. In Section 2 we prove Theorem 1.1 and
give another result for the positivity of the operator Pn

g when the scalar curvature
is positive. In Section 3 we investigate the negativity of the eigenvalues of Pn

g in an
Einstein manifolds, in particular we prove the following.

Theorem 1.2. Given (M, g) an Einstein manifold of dimension n ≥ 5 with negative

scalar curvature. If

(1.9)
(n2 − 2n− 8)

4n(n− 1)
|Scg| < λ1 <

(n2 − 2n)

4n(n− 1)
|Scg|

where λ1 is the first eigenvalue of the Laplacian operator ∆g, then the first eigen-

value µ1 of the Paneitz-Branson operator is strictly negative.

Moreover, we also prove in this section, that it is possible to choose a metric g

on the manifold M such that Pn
g has multiple negative eigenvalues. Finally, in the

last section we give several inequalities related to the mean value of the Q-curvature,
as an example we prove the following result

Theorem 1.3. Let M be a compact Riemannian manifold endowed with a Yamabe

metric g. If the scalar curvature Scg ≥ n(n− 1), then

(1.10)

∫

M

Qgdvg ≤

(

λ1

n

)2 ∫

Sn

Qhdvh

where λ1 is the first eigenvalue of the Laplacian operator ∆g and (Sn, h) denotes

the round sphere endowed with its canonical metric.

2. Positivity of the Paneitz-Branson operator

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5, we say that
the Paneitz-Branson operator Pn

g is positive [8] if

∫

M

uPn
g (u)dvg ≥ 0, ∀u ∈ H2

2 (M).

The conditions under which the operator Pn
g is positive have been intensively stud-

ied. For example it was considered by Gursky [11] for dimension n = 4, Yang and
Xu [22] for dimension n ≥ 5, Hebey and Robert [14], and recently by Gursky and
Malchiodi [12].

Yang and Xu in [22] showed that when the dimension of (M, g) is n ≥ 6, if the
Yamabe invariant of g is non negative and the Q-curvature is positive, then with
respect to any conformal metric of positive scalar curvature, the Paneitz-Branson
operator is positive.
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In this section, we are concerned with finding sufficient conditions on the cur-
vature of g, to ensure the positivity of the Paneitz-Branson operator Pn

g .
As a first result we have

Theorem 2.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5
with positive non constant scalar curvature and positive Q-curvature. If

(2.1)
1

n
Scg.g ≤ Ricg ≤

n− 2

2n
Scg.g,

then the Paneitz-Branson operator is positive.

Proof. To prove this theorem, we use an idea from [22].
First, we multiply both sides of (1.2) by u, and integrate by parts,

∫

M

uPn
g (u)dvg =

∫

M

(∆gu)
2dvg + an

∫

M

Scg|∇gu|
2dvg

−
4

n− 2

∫

M

Ricg(∇gu,∇gu)dvg +
n− 4

2

∫

M

Qgu
2dvg(2.2)

where an as in (1.3). An application of the Bochner formula together with condition
(2.1) gives

∫

M

uPn
g (u)dvg ≥

∫

M

|∇2
gu|

2dvg +

(

an −
1

n

)
∫

M

Scg|∇gu|
2dvg

+
n− 4

2

∫

M

Qgu
2dvg.(2.3)

which implies the positivity of Pn
g . 2

Now, to prove Theorem 2.1, we need the following lemma.

Lemma 2.2. ∀u ∈ H2
2 (M) we have

(2.4)
2

n

∫

M

|∇gu|
2dvg ≤

1

n

∫

M

u2dvg +

∫

M

|∇2
gu|

2dvg

Proof. Let u be a smooth function, and consider the following tensor with local
coordinates

Tij :=
(

∇2
gu

)

ij
+

1

n
u(x)gij .

The tensorial norm of T with respect to the metric g is

|T |2g = |∇2
gu|

2 −
2

n
u∆g(u) +

1

n
u2.

Since |T |2g ≥ 0, it follows that

2

n
u∆g(u) ≤ |∇2

gu|
2 +

1

n
u2.
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Therefore, an integration by parts give us

(2.5)
2

n

∫

M

|∇gu|
2dvg ≤

1

n

∫

M

u2dvg +

∫

M

|∇2
gu|

2dvg, ∀u ∈ C∞(M).

Now, by the density of C∞(M) in H2
2 (M) with respect to the norm

‖u‖2 =

∫

M

|∇2
gu|

2dvg +

∫

M

|∇gu|
2dvg +

∫

M

u2dvg,

one can assume that u ∈ H2
2 (M) (instead of C∞(M)) and inequality (2.5) remains

valid.

2

We are now in position to prove Theorem 1.1.

Proof. We begin with (2.2)

∫

M

uPn
g (u)dvg =

∫

M

(∆gu)
2dvg + an

∫

M

Scg|∇gu|
2dvg

−
4

n− 2

∫

M

Ricg(∇gu,∇gu)dvg +
n− 4

2

∫

M

Qgu
2dvg(2.6)

An application of the Bochner formula, together with condition (1.7) gives

∫

M

uPn
g (u)dvg ≥

∫

M

|∇2
gu|

2dvg +

(

an +
1

n
−

2

n(n− 2)

)
∫

M

Scg|∇gu|
2dvg

+
n− 4

2

∫

M

Qgu
2dvg.(2.7)

Now, we apply inequality (2.4) with condition (1.8), to obtain

∫

M

uPn
g (u)dvg ≥

∫

M

(

2

n
+

n3 − 2n2 − 2n+ 8

2n(n− 1)(n− 2)
Scg

)

|∇gu|
2dvg

which implies by assumption (1.6), that Pn
g is positive. 2

3. Multiple Negative Eigenvalues for the Paneitz-Branson Operator

Our first observation is that the negativity of the quantity

(3.1) κg :=

∫

M

Qgdvg

is a sufficient condition for the negativity of the first eigenvalue µ1 of the operator
Pn
g .
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Indeed by the variational definition of µ1, we have

(3.2) µ1 = inf
u∈H2

2
(M)\{0}

∫

M
uPn

g (u)dvg
∫

M
u2dvg

,

whereH2
2 (M) is the Sobolev space defined as the completion of C∞(M) with respect

to the norm

‖u‖2 =

∫

M

|∇2
gu|

2dvg +

∫

M

|∇gu|
2dvg +

∫

M

u2dvg.

It follows, in the particular case of u ≡ 1, that

µ1 ≤
n− 4

2Vg(M)

∫

M

Qgdvg.

So, if

(3.3)

∫

M

Qgdvg < 0

then µ1 < 0. Thus it is clear that though the scalar curvature of the manifold is
positive; the Paneitz-Branson operator can have negative eigenvalues. The following
is a typical example.

Example 3.1. Let (S4, h) be the standard round sphere of dimension 4 and (Σ3, g0)
a hyperbolic manifold. We equip the product manifold

M7 := S
4 × Σ3

with the product metric
g := h⊗ 1 + 1⊗ g0.

Thus (M7, g) is a conformally flat manifold, since it is the product of two manifolds
with sectional curvatures of opposite sign Kp(S

4) = +1, Kp(Σ
3) = −1. Moreover,

the Ricci curvatures of S4 and Σ3 are respectively

Rich = 3h, and Ricg0 = −2g0;

and consequently, the scalar curvatures are

Sch = 12, and Scg0 = −6.

Finally, the scalar curvature of M7 is Scg = 6 and |Ricg|
2
g = 48.

Thus, as a conclusion, the manifold M7 is conformally flat manifold with pos-
itive scalar curvature (Scg = 6) but according to formula (1.4) with negative
Q−curvature (Qg = − 21

8 ), which implies that the first eigenvalue µ1 of the Paneitz-
Branson operator is strictly negative.



On the Paneitz-Branson Operator in Manifolds 757

However there is an important class of manifolds for which condition (3.3) is
not satisfied, for example the Einstein manifolds (note that the previous example
is not an Einstein manifold). Indeed, if the scalar curvature Scg of an Einstein
manifold is a non zero constant, then the Q-curvature is strictly positive constant
and satisfied

(3.4) Qg =
n2 − 4

8n(n− 1)2
Sc2g.

But still in this situation, the Paneitz-Branson operator has negative eigenvalues;
Theorem 1.2 gives us an example. In what follow we prove this theorem.
Proof. Let (M, g) be an Einstein manifold of dimension n ≥ 5 with negative scalar
curvature, and u ∈ H2

2 (M).

∫

M

uPn
g (u)dvg =

∫

M

(∆gu)
2dvg +

n2 − 2n− 4

2n(n− 1)
Scg

∫

M

|∇gu|
2dvg

+
(n− 4)(n2 − 4)

16n(n− 1)2
Sc2g

∫

M

u2dvg.(3.5)

In the particular case when u ≡ ϕ1, where ϕ1 is an eigenfunction corresponding to
the first eigenvalue λ1 of ∆g; (3.5) becomes

∫

M

ϕ1P
n
g (ϕ1)dvg =

(

λ2
1 +

n2 − 2n− 4

2n(n− 1)
Scgλ1 +

(n− 4)(n2 − 4)

16n(n− 1)2
Sc2g

)
∫

M

ϕ2
1dvg.

So, if λ1 is satisfied (1.9), then it is obvious that the quantity

λ2
1 +

n2 − 2n− 4

2n(n− 1)
Scgλ1 +

(n− 4)(n2 − 4)

16n(n− 1)2
Sc2g

is strictly negative, which implies immediately the negativity of the first eigenvalue
µ1 of the operator Pn

g by the variational definition (3.2) of µ1. 2

It turns out that Riemannian manifolds with negative scalar curvature are the
most favoured example for the Paneitz-Branson operator to have negative eigenval-
ues. In fact, in [7] Canzani et al provided several examples of manifolds of negative
curvature for which the Yamabe operator

(3.6) Lg(u) := ∆g(u) +
n− 2

4n(n− 1)
Scgu

has multiple negative eigenvalues. In particular, they proved the following

Theorem 3.2. Let (M, g) be a compact connected Riemannian manifold. Then,

for every m there is a metric g on M such that the Yamabe operator Lg has at least

m negative eigenvalues counted with multiplicity.

Below, we extend this result to the Paneitz-Branson operator on compact connected
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Einstein manifolds of dimension n = 5.

Theorem 3.3. Let (M, g) be a compact connected Einstein manifold of dimension

5. For every m ∈ N⋆ there is a metric g0 on M such that the Paneitz-Branson

operator Pn
g0

has at least m negative eigenvalues counted with multiplicity.

The proof of this result is based on an idea of Canzani et al [7].

Proof. Let (M, g) be a compact connected Einstein manifolds of dimension n = 5.
By a result of Lohkamp [16], for any λ ∈ R, there exist a metric g0 such that λ is
the first eigenvalue of ∆g0 of multiplicity m, the volume Vg0(M) of M with respect
to g0 satisfies Vg0(M) = 1, and Ricg0 ≤ −m2g.

Since (M, g) is an Einstein manifold, so we may assume

Ricg0 = −m2g, hence Scg0 = −5m2.

Thus, ∀u ∈ H2
2 (M), the Paneitz-Branson operator Pn

g0
take the form

Pn
g0
(u) := ∆2

g0
(u)− divg0

[(

13

24
(−5m2)g0 −

4

3
(−m2)g0

)

du

]

+
1

2
Qg0u

which implies
(3.7)
∫

M

uPn
g0
(u)dvg0 =

∫

M

(∆g0u)
2
dvg0 −

11

8
m2

∫

M

|∇g0u|
2dvg0 +

105

256
m4

∫

M

u2dvg0 .

In particular, for u ≡ ϕ1 the eigenfunction associated to the first eigenvalue λ of
∆g0 with multiplicity m, (3.7) yields

(3.8)

∫

M

ϕ1P
n
g0
(ϕ1)dvg0 =

(

λ2 −
11

8
m2λ+

105

256
m4

)
∫

M

ϕ2
1dvg0 .

So, if we set λ = 1
2m

2, then it follows from (3.8), that µ1 = − 7
256m

4 is a negative
eigenvalue for the Paneitz-Branson operator with multiplicity m. 2

An other example of manifolds such that the Paneitz-Branson operator admits
multiple negative eigenvalues is also presented by Canzani et al in [7]. Before stating
this result, we need to introduce the notion of the GJMS operator P k

g .
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. Let k

be a positive integer such that n > 2k. In [10], Graham-Jenne-Mason-Sparling
defined a differential operator denoted by P k

g . From the conformal geometric point
of view, this operator can be considered as a generalization of both the Yamabe
operator given in (3.6) and the Paneitz-Branson operator given in (1.2). More

precisely, this operator is conformally covariant in the sense that if g̃ := ϕ
4

n−2k g

where ϕ ∈ C∞(M), ϕ > 0, then

P k
g (ϕu) = ϕ

n+2k
n−2k .P k

g̃ (u), ∀u ∈ C∞(M).
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Moreover, P k
g is self-adjoint with respect to the L2-scalar product. This operator

is intimately related to the geometric quantity of Q-curvature, denoted as Qk
g and

satisfying

Qk
g =

2

n− 2k
P k
g (1).

A lot of work has been devoted to the study of the GJMS operator, see, for example,
[17],[3],[19],[15], and [5], and the references therein.
Having defined the GJMS operator, we can now state the result of Canzani et al.

First, Let (M, g) be a compact hyperbolic product manifold

M = N × Σ

of dimension n, equipped with a product metric

g := g1 ⊗ 1 + 1⊗ g2,

where (N, g1) is an hyperbolic manifold of dimension n − 2, and (Σ, g2) is an hy-
perbolic surface with genus s ≥ 2. Notice that (M, g) is an Einstein manifold with
Ricg = −g.

Theorem 3.4. For every m ∈ N, we can choose the hyperbolic metric g2 on Σ so

that the GJMS operator P k
g has at least m negative eigenvalues for all odd integers

k ≤ n−1
2 .

If we further assume that n = 4l or n = 4l + 1 for some l ∈ N, then the same

conclusion holds for all integers k ≥ n
2 .

It seems that this result does not cover the case of the Paneitz-Branson operator in
manifolds of five dimension.

Indeed, if n = 5, then either k is an odd integer less then 2, i.e, k = 1 and in
this case we have only the Yamabe operator P 1

g , or l = 1, i.e., n = 4l + 1, and in

this case k ≥ 5
2 . This means all GJMS operators are of order greater than 3, and

as is obvious, the Paneitz-Branson operator does not appears in this sequence of
operators. So, in this section and by the same technique, we investigate the case
of the Paneitz-Branson operator on manifolds of dimension 5, and we prove the
following.

Theorem 3.5. Let (M, g) be a compact hyperbolic product manifold

M = N × Σ

of dimension 5, equipped with a product metric

g := g1 ⊗ 1 + 1⊗ g2,

where (N, g1) is an hyperbolic manifold of dimension 3, and (Σ, g2) is an hyperbolic

surface with genus s ≥ 2. For any m ∈ N, there exists a metric g2 on Σ, such that

the Paneitz-Branson operator has at least m negative eigenvalues.
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It should be mentioned that the basic idea underlying the presented proof was
borrowed from [7].

Proof. Let (N, g1) be a hyperbolic manifold of dimension 3, and (Σ, g2) be a hyper-
bolic surface with genus s ≥ 2. Consider the product manifold M = N×Σ equipped
with the product metric g := g1 ⊗ 1 + 1⊗ g2.

After scaling by a positive constant we may assume that the scalar curvature
Scg of the manifold M is

Scg = −2, and Ricg = −
2

5
g.

In other words, (M, g) is an Einstein manifold; therefore, the operator Pn
g has the

following formula

(3.9) Pn
g (u) = ∆2

g(u)−
11

20
Scg∆g(u) +

21

320
u.

Let λ be an eigenvalue of ∆g2 and let ϕ be an eigenfunction associated to λ. If we
regard ϕ as a function on M , then

∆g(ϕ) = ∆g2(ϕ) = λϕ.

Combining this with (3.9), we then see that ϕ is an eigenfunction of Pn
g with

eigenvalue

(3.10) µ(λ) = λ2 −
11

20
λ+

21

320
.

Now, let m ∈ N; Since 1
4 ∈

]

7
40 ,

3
8

[

and Σ has genus s ≥ 2, so it follows by a result
of Buser [6] that one can find an hyperbolic metric g2 on Σ, such that the Laplacian
∆g2 has at least m eigenvalues which belong to

]

7
40 ,

3
8

[

.
Therefore, we infer by (3.10) that, for each eigenvalue λ of ∆g2 in the interval

]

7
40 ,

3
8

[

; there exists a negative eigenvalue µ(λ) for the Paneitz-Branson operator
Pn
g . As a conclusion, the operator Pn

g has m negative eigenvalues. This completes
the proof of Theorem 3.5. 2

We finish this section with a classification result which comes as a consequence
of the negativity of the first eigenvalue of the Paneitz-Branson operator.

Proposition 3.6. Let (M, g) be a compact Riemannian manifold of dimension 5
with non negative Q-curvature, and negative scalar curvature. Assume that

(3.11) Ricg ≤
13

2
Scgg.

If the first eigenvalue µ1 of the Paneitz-Branson operator is non positive, then (M, g)
is conformally diffeomorphic to the round sphere (S5, h).

To prove this result we need the following lemma of Tashiro [20]. For the following
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version one can see [13] page 291.

Lemma 3.7. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 2.
If there exist a non constant function f ∈ C∞(M); such that

(3.12) ∇2f +
1

n
(∆gf) g = 0,

then (M, g) is conformally diffeomorphic to the round sphere (Sn, h).

Proof. Let (M, g) be a compact Riemannian manifold of dimension 5; and let
u ∈ H2

2 (M). By formula (2.2) and since Qg ≥ 0, we have

∫

M

uPn
g (u)dvg ≥

∫

M

(∆gu)
2dvg +

13

24

∫

M

Scg|∇gu|
2dvg −

4

3

∫

M

Ricg(∇gu,∇gu)dvg.

(3.13)

using the formula

|∇2u|2g =

∣

∣

∣

∣

∇2u+
1

5
(∆gu) g

∣

∣

∣

∣

2

g

+
1

5
(∆gu)

2

with the Bochner formula
∫

M

(∆gu)
2
dvg =

∫

M

|∇2u|2dvg +

∫

M

Ricg(∇gu,∇gu)dvg

we obtain
∫

M

uPn
g (u)dvg ≥

5

4

∫

M

∣

∣

∣

∣

∇2u+
1

5
(∆gu) g

∣

∣

∣

∣

2

g

−
1

12

∫

M

Ricg(∇gu,∇gu)dvg

+
13

24

∫

M

Scg|∇gu|
2dvg.(3.14)

So, if (3.11) holds, then

(3.15)

∫

M

uPn
g (u)dvg ≥

5

4

∫

M

∣

∣

∣

∣

∇2u+
1

5
(∆gu) g

∣

∣

∣

∣

2

g

, ∀u ∈ H2
2 (M).

Now, if the first eigenvalue µ1, of the Paneitz-Branson operator Pn
g is non positive,

then it follows from (3.15) in the particular case when u ≡ ϕ, where ϕ is the
eigenfunction corresponding to the first eigenvalue µ1 of Pn

g , that

∫

M

∣

∣

∣

∣

∇2ϕ+
1

5
(∆gϕ) g

∣

∣

∣

∣

2

g

dvg = 0

which implies that
∣

∣

∣

∣

∇2ϕ+
1

5
(∆gϕ) g

∣

∣

∣

∣

2

g

= 0
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or, equivalently

∇2ϕ+
1

5
(∆gϕ) g = 0

Thus, (M, g) is conformally diffoemorphic to the round sphere (S5, h) by Lemma
3.7. 2

4. Upper Bound for the Mean Value of the Q-curvature

Our purpose in this section is to get an upper bound for the quantity κg, where

κg =

∫

M

Qgdvg

with

(4.1) Qg =
1

2(n− 1)
∆Scg +

n3 − 4n2 + 16n− 16

8(n− 1)2(n− 2)2
Sc2g −

2

(n− 2)2
|Ricg|

2
g.

in terms of curvatures such as scalar curvature and Ricci curvature. A famous
result in this subject is the result of Gursky in [11] for four-dimensional Riemannian
manifolds.

Theorem 4.1. Let (M4, g) be a smooth compact four-dimensional Riemannian

manifold. If the Yg(M) ≥ 0 then κg ≤ 8π2. Moreover, Yg(M) ≥ 0 and κg = 8π2 if

and only if (M4, g) is conformally equivalent to the round sphere.

There is no analogue to this theorem for manifolds of greater dimension (n ≥ 5)
or for manifolds with negative Yamabe constant. Almost all that is known in this
direction is Theorem 1.3 in the case of manifolds with Yamabe metric.

Now, we begin by the following lemma which is useful for the sequel.

Lemma 4.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5
with negative scalar curvature, not necessarily constant. Its Yamabe constant Yg(M)
satisfies

(4.2) Yg(M) ≥ −
n− 2

4(n− 1)
‖Scg‖n

2
.

It is worth noticing that the previous inequality give us a lower bound for the
Yamabe constant, which is negative since the scalar curvature is negative. From
now on, we use the following notations.

The quantity

‖u‖p =

[
∫

M

|u|pdvg

]
1
p

.
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denotes the norm of a function u in the Lebesgue space Lp(M), and 2⋆ = 2n
n−2 the

critical Sobolev exponent. Now we prove the lemma.
Proof. First let us recall the definition of the Yamabe constant:

Yg(M) := inf
u∈H2

2
(M)\{0}

∫

M
|∇gu|

2dvg +
n−2

4(n−1)

∫

M
Scgu

2dvg

‖u‖22⋆
.

By the Hölder’s inequality and since Scg(x) < 0, we have

∫

M

|∇gu|
2dvg +

n− 2

4(n− 1)

∫

M

Scgu
2dvg ≥ −

n− 2

4(n− 1)
‖Scg‖n

2
‖u‖22⋆

which implies that the number − n−2
4(n−1)‖Scg‖n

2
is a lower bound for

∫

M
|∇gu|

2dvg +
n−2

4(n−1)

∫

M
Scgu

2dvg

‖u‖22⋆
.

Hence

−
n− 2

4(n− 1)
‖Scg‖n

2
≤ Yg(M).

2

Now, we state our main result

Theorem 4.3. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5
with non constant negative scalar curvature (Scg(x) < 0, ∀x ∈ M). If the Q-

curvature satisfies Qg ≥ 0, then

(4.3)

∫

M

Qgdvg ≤ αn

‖Scg‖n
2
‖Scg‖

2
2⋆

|max
x∈M

Scg(x)|

where

(4.4) αn =
n2 − 4

8n(n− 1)2
, and 2⋆ =

2n

n− 2
.

Before proving this theorem, let us make the following remark.
If we integrate (4.1) over M , then it follows by the divergence theorem and the

inequality |Ricg|
2
g ≥ 1

n
Sc2g that

(4.5)

∫

M

Qgdvg ≤
n2 − 4

8n(n− 1)2

∫

M

Sc2gdvg.

So, it appears that (4.3) is an analogous inequality to (4.5), and with the same

dimensional constant n2−4
8n(n−1)2 .

Now, we prove Theorem 4.3.
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Proof. Multiply (4.1) by Scg, we have, after integration by parts,

∫

M

ScgQgdvg =
1

2(n− 1)

∫

M

|∇gScg|
2dvg+an

∫

M

Sc3gdvg−
2

(n− 2)2

∫

M

Scg|Ricg|
2dvg

where an = n3−4n2+16n−16
8(n−1)2(n−2)2 . Since |Ricg|

2 ≥ 1
n
Sc2g, we have

(4.6)

∫

M

ScgQgdvg ≥
1

2(n− 1)

[
∫

M

|∇gScg|
2dvg +

n2 − 4

4n(n− 1)

∫

M

Sc3gdvg

]

.

Now, by the definition of the Yamabe constant Yg(M) we get

∫

M

|∇gScg|
2dvg ≥ ‖Scg‖

2
2⋆Yg(M)−

n− 2

4(n− 1)

∫

M

Sc3gdvg ,

and combining this with (4.6) one gets

(4.7)

∫

M

ScgQgdvg ≥
1

2(n− 1)

[

‖Scg‖
2
2⋆Yg(M) +

n− 2

2n(n− 1)

∫

M

Sc3gdvg

]

.

Or equivalently, since Scg < 0

(4.8)

∫

M

ScgQgdvg ≥
1

2(n− 1)

[

‖Scg‖
2
2⋆Yg(M)−

n− 2

2n(n− 1)

∫

M

|Scg|
3dvg

]

.

Now using Lemma 4.3 together with the following Hölder’s inequality
∫

M

|Scg|
3dvg ≤ ‖Scg‖

2
2⋆‖Scg‖n

2

we deduce that

(4.9)

∫

M

ScgQgdvg ≥ −
n2 − 4

8n(n− 1)2
‖Scg‖

2
2⋆‖Scg‖n

2
.

Therefore, from (4.9) and the fact Scg < 0, it follows that

−|max
x∈M

Scg(x)|

∫

M

Qgdvg ≥ −
n2 − 4

8n(n− 1)2
‖Scg‖

2
2⋆‖Scg‖n

2

which proves (4.3). 2

Now, it remains for us to prove Theorem 1.3.

Proof. Let (M, g) be a compact Riemannian manifold endowed with a Yamabe
metric. As is well known, the scalar curvature Scg of M is constant and satisfied
by the Aubin estimate [2]

(4.10) Scg ≤ (n− 1)λ1
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where λ1 is the first eigenvalue of the Laplacian operator ∆g.

Now, An integration by parts of the formula (4.1) over M gives us

∫

M

Qgdvg = an

∫

M

Sc2gdvg −
2

(n− 2)2

∫

M

|Ricg|
2dvg

where an as in (1.3). Since |Ricg|
2 ≥ 1

n
Sc2g, we have

(4.11)

∫

M

Qgdvg ≤
n2 − 4

8n(n− 1)2

∫

M

Sc2gdvg,

and with (4.10) we infer

(4.12)

∫

M

Qgdvg ≤
n2 − 4

8n
λ2
1Vg(M)

where Vg(M) stands for the volume of M with respect to g.
Recall now from [1] that the scalar curvature satisfied

Scg = Yg(M) (Vg(M))
− 2

n

≤ n(n− 1) (Vh(S
n))

2
n (Vg(M))

− 2
n(4.13)

where Yg(M) is the Yamabe constant of M , and Vh(S
n) is the volume of Sn with

respect to h.
If Scg ≥ n(n− 1), then it follows from (4.13) that

(4.14) Vg(M) ≤ Vh(S
n).

Combining (4.14) with (4.12), we infer

∫

M

Qgdvg ≤
n(n2 − 4)

8

(

λ1

n

)2

Vh(S
n).

Recall that Qh = n(n2−4)
8 , the inequality (1.10) follows. 2
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