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ON HOLDER-MCCARTHY-TYPE
INEQUALITIES WITH POWERS

CHIA-SHIANG LIN AND YEOL JE CHO

ABSTRACT. We extend the Hdlder-McCarthy inequality for a pos-
itive and an arbitrary operator, respectively. The powers of each
inequality are given and the improved Reid’s inequality by Halmos
is generalized. We also give the bound of the Holder-McCarthy
inequality by recursion.

Let A be a positive (bounded and linear) operator (written A > 0)
on a Hilbert space H. Then, for any x € H and a given positive real
number 7,

(a) (Az,z) < (Az,z)"|=]*' Y, v € (0,1),
and
(b) (Arz,z) > (Az. ) ||z||207Y)) 4y > 1.

McCarthy [7] proved the inequalities above by using the spectral res-
olution of A and the Holder inequality. which justifies the terminology:
the Holder-McCarthy inequality. His proof is simple, but not elementary
by no means.

In this paper, we shall generalize the inequalities (a), (b) and consider
the powers of the inequalities for a positive and an arbitrary operator,
respectively. Also, the improved Reid’s inequality by Halmos is extended
and the bound of (A"z,z) — (Az,z)" forn = 1,2,--- and ||z|]| = 1 is
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given recursively together with the equality condition. For other recent
improvements on Reid’s inequality, see [3] and [5].

Before we proceed, we need to know that, if A > 0, then

(1) A* > 0 for any real number a > 0,

(2) [(Az,y)[? < (Az,z)(Ay,y) for every z,y € H.
The inequality (2) is known as the Cauchy-Schwarz inequality for a
positive operator A. For more information on Cauchy-Schwarz inequality
for high-order and high-power, one may refer to [6]. These two properties
would be frequently used throughout this paper without mentioning
them. The identity operator on H is denoted by I, which is positive,
and A > 0 means that A > 0 and A is invertible.

THEOREM 1. For A > 0, a given positive real number v > 1 and for
every x,y € H, we have

(1) |(Az, y)|” < (A7z,2) (A7, )2 |l ly) .
More generally, forn =1, 2, --- , we have
[(Az, y)|"
@) < (AT 0D gy (42O gy e
2n—1l1 an—1t_

x (Az,2) 7= (Ay,y) = |2l Hlyl"

satisfying the relation

21141_

(A" Oy ) (A, 2) T
< (¥ 0D 0) 5T (Ag, 2) T
Proof. (1) By the inequality (b), we have

[(Az, )| = [(Az,y)[*F < (Az,2)7 (Ay,y)?
< (Az,z)E(Ay, ) * (e "yt
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For n > 2, suppose that

Then we have

(AQ'HI(’Y_IHlJ?,:I?)?%(A:E,I)%

2n 1,

= (AA?" O Dy gyt e (Ag,x) T
27 -1

< (AZGmUH g 5T (A, )3

2.
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an—1_;
as (Aac,:v)‘r’l*’1 T o (Az,2)2=7. Similarly, we can consider the
term (A7y,y) 3, and conclude that the proof is completed by induction.[]

REMARK 1. The Holder-McCarthy inequality (a) and two inequali-

ties (1) and (2) in Theorem 1 arc all equivalent to one another.

THEOREM 2. Let T be an arbitrary operator. If v is a positive real

number with v > 1, then, for every xz,y € H,
(1) (Tz, )" < (T°T) )= ||z~ Hly[]>.
More generally, forn =1,2,-.- , we have

@ Tz,

arr—1

< ((T°T)" O g ) (T T, m) ™ el [y

satisfying the relation

gn=1_,

(T*T)>" " =Dy pyar (T T, z) 2

27 -1

S ((T*T)Q" ("/—1)4—1:1:7 J,') ?”E—l (T*TZE, l‘) ST

Proof. (1) Clearly T*T > 0. By the inequality (b), we have

(Tz,y)|" = |(ITz,y)[*F < [Tz, Tz)(Iy,y)]?
= (T"Tz,z)¥ |y
< (T Tz, 2)2 2]~y
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(2) We have

(T*T) 'z, z)?

(T°T) (T*T)"~"z,z)* %

(T*T)*" 'z, z)% (T*Tx,z)7
(T*TNT*T)? 2z,2)*5 (T*Tz,z)3
(T*T)"=3)3 (T Tz, z).

Il

IA

I

(
(
(
(
<(

For n > 2, suppose that
. an—2
(T T)?" 20Dy gyaw=T (T T, z) T

on—1

< (T T 0TI g ) (T T, m) T

Then we have

(T*T)?" " O~V g )P (T°T, z) ¥ o

on—1_

= (T*T)(T*T)* O Vg 2)* 77 (T T, ) o

on 1

< ((T*T)2"(v-1)+1$’m)2n‘ﬂ (T*Tx,z) 71

1_ 2'1

as (T"Tz :c) T = (T*Tz,z)2"+" and so the proof is completed
by induction. O

REMARK 2. The inequalities (1) and (2) in Theorem 2 are equivalent
to one another. Also, if S is a self-adjoint operator (not necessarily
positive), then Theorem 2 may be changed to the following and we shall
omit the proof.

ey |(Sz,y)[" < (52, 2) 2 |jz]> "yl

More generally, for n = 1,2,.-- , we have

(2) [(Sz,y)]” < (52"(W—1)+2I’x)2;n(Szx’m).z";”_l

satisfying the relation

(5271(,7—1)+2x’$)72%(52x ,7:)2n 1_,

2" -1

< (7O g 4) T (S, 0)
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Recall that the spectral radius of an operator T' is denoted by r(7T),
which is defined by

r(T) =sup{|A : A€ a(T)},

where o(T") is the spectrum of 7. Note that clearly 0 < 7(T') < ||T'|| and
r(T) is known to be equal to lim, . || 7" ||*/".

The relation [(AFz,z)| < ||E||(Az,z) for all x € H is known as the
Reid inequality for A > 0, and an operator F such that AF is a self-
adjoint operator ([8]). In [2], Halmos sharpened the inequality in that
he has r(E) instead of | E||. Our inequality (2} in Theorem 3 below is a
further genecralization with a different proof.

THEOREM 3. Let A > 0 and let E, F be any operators such that
AFE and AF are self-adjoint. Then, for every x,y € H, a positive real
number v > 1 andn=1,2,.-.-, we have

(1) [(AEz, Fy)|”

o=l yy. - " on—1_
< (AE2 x,m)%(Aw,:r)u ! (AFZ y,y)fﬁ(Ay,y)i——z B

satisfying the relation

(" '-n- (2" ~1)y

(AE? z,2)7 (Az,z) "7 < (AE®" &,2)7 (Az, @) 0

and

(2r 71 1)- (2" 1)y

DYl O 1 ng
(AE? y,y)7 (Ay,y) = < (AE*  y,y)7 (Ay,y) =1 .
In particular,

(2) (ABz, Fy)| < r(E)r(F)(Az,z)% (Ay,y)7.

Proof. (1) Notice first that (E*)'AE’ = AE? and (F*)'AF' = AF?
for i =1,2,--- due to the self-adjointness of AE and AF. Next, we see
that

(AEz, Fy)|” = |(AEz, Fy)|*? < (AEz, Ez)? (AFy, Fy)?
= (AE%z,2)% (AF?y,y)*.
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Now, consider the term (AEZ%z, z)? as follows:
(AE?z,1)% = (AE%z,2)*% < (AE%z, E%r)% (Az,2)?
= (AE*z,2)% (Az,2)7 = (AE'z,2)% 3 (Az,z) ¥

< (AE%z,2)? (Az, )% .

|3

(
(
For n > 2, suppose that

n— @21 " @@n-1-1
(AE? lx,x)'z"w“ (Az,z) 27T t < (AE? x,x)ij”(Ax,z)—'—zn—ll

Then we have

@11y

(AE* z,2)7" (Az,z)
7 n—1_
= (AE2R:E,$)2.2"+1 (A:L',x) = DI LIk
n n G )) 7
< (AE? z,E¥ 2)5°% (Az,z) = BT

(2" -1)y
w141

= (AE?"" 4, 2)7T (Az, z) =

This together with a similar consideration for the term (AF2y,y)? im-
plies the inequality (1) by induction.
(2) We may replace vy in (1) above by 2" to get
((AEz, Fy)*"
< (AE ,2)(Az,0)”" " TN AF y, y)(Ay,y)*
mn n—1_ n n—1_
< NAPIE Mzl (Az,2)® HF2 iyl (Ay,9)*

The desired inequality follows by taking the 2"-th root of both sides
above and passing to the limit as n — oc. This completes the proof.

REMARK 3. The positive operator A in Theorem 3 may be relaxed to
a self-adjoint operator S. In other words, if £ and F' are any operators
such that S?FE is self-adjoint, then, for any z,y € H, a positive real
number v > 1land n=1,2,---, we have

(1) [(SBa, Fy)
< (SE”2,2) (S%0,2) 7 (FF)2 )yl
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satisfying the relation
n - . 2=y
(S?E* z,1) ?‘W(LS”Z:E.:L’)(AW]_j

(2" =1)9

< (SQE'Z"H:L’,:z:)z_'fT‘(Szm,m) STES

Note that
2) (SEz, Fy)| < v(E)r(F*F)* (8%, ) [|yl.

We shall omit the proof.
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The next result depends on the Holder-McCarthy inequality (b) wher-

ever is appropriate.

THEOREM 4. For every x,y € H, we have the following:
(1) If A > 0, then, for a positive real number v € (0, 1],

(A7, y)| < (Az,2)7 (Ay, )= [z "yl
(2) If A >0, then, forn =1. 2, --- and any real number p,

|(A“:L',y)[2" < (A2""/:,—2" 1+":L',.1‘)
X (Aa:,a:)znfl

; grn-1, yn-—1 gn—1 __
I(AZ H—2 Hy,y)(Ay,y)z 1~

(3) If A > 0, then, for n = 1.2--- and a positive real number

n

o —1_
v e (1],

(A2 ) < (A2 (A y) el 020,

Proof. (1) By the inequality (a), we have

|(A"’.Z‘,;l/)]2 < (AW.’L‘,m)(ATVy’y)
< (Az,z)" (A ,y)wIIsz(l—q)”y”:z(lﬂr)'

(2) Note that

(A2, )| < (AFz,2)? (A, y)? = (AA* Do, 2)2 (AA" 1y, y)?
< (A Vg, ) (A, ) (A ) (Ay, )
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and

[(A*z,y)|* < (A% o, z)?(Az, 2)? (A% 1y, y)2 (Ay, y)?
= (AAZ“_QJ:,x)(Aac,a:)2(A2“_2y,y)(Ay,y)2
< (A% Pz, 3)(Az, 1) (A% 3y, ) (Ay, v)°.

For n > 2, suppose that

|(A/J'x’y)|2n_l S (A2n—2u_2nf2+1x,x)(Ax’x)2n—2__1

n—2, on-—2 n—2__
x (A2 A2y ) (Ay,y)R T L
Then it follows that

(A2, )" < (A% g )2 (A, 2)? T
n—-2 _ on-2 n—-1_
% (AZ n—2 +1y,y)2(Ay,y)2 2

S (Azn.~1”_2n—l+1m7$)(Ax, x)2n—1__1

% (A21a—lu_2n-1 )Zn—l_l

y,u)(Ay,y
since we have
(A2"—2”—2n_2+1:c, m)z — (AAQn—‘Z'u_Qn—Zx’ :L')2
< (A% Ty ) (Az, @),

The claim is thus proved.
(3) If2n—ty—2n-l +1€(0,1],ie, v € (%, 1], then we have

(A2n—1,y_2n—1+1m’$) S (Ax, x)2n_1’7'—2n—1+1||x||2n(1_7)
and
n—=1__gon-—1 n—=1__sn-—1 T
(A% 7y ) < (Ay, )™ T 0
as 2[1 — (2"~ 1y — 2771 4+ 1)] = 27(1 — ) for the power of ||z|| and ||y||.

The required inequality is clear now due to (2) above. This completes
the proof. |
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REMARK 4. The Holder-McCarthy inequality (a) and two inequali-
ties (1) and (3) in Theorem 4 are all equivalent to one another.

Finally, we are going to find the bound of the Holder-McCarthy in-
equality (b) by recursion. Now we assume that ||z| = 1 in order to
simplify the expression. First, we require the next lemma, for which the
tool of the proof is the Cauchy-Schwarz inequality.

LEMMA. Let A > 0 and let x be a unit vector. Then, forn =1,2,---,

[(Az, A"z) — (Az,2)(A"z, 2))?
< [JAz]? — (Az, 2)?][| A 2|* - (A", 2)?].

The equality holds if and only if A"x = cx + dAzx for some real numbers
¢ and d.

Proof. Let u = [|A"z||* — (A"z,1)?, which is nonnegative by the
Cauchy-Schwarz inequality. The required inequality is trivial if u = 0
(equivalently, z and A"z are proportional). So, let v > 0 and put
v = (Az, A"z) — (Az,z)(A"z,z). Then we have

0 < ludz — vA"z|? — (uAz — vA" 1z, x)?
= u?||Az|]? — 2uv(Ax, A"2) + v?| A"z |?
— [u*(Az,z)? — 2uv(Az. 2)(A"z,2) + v* (A", z)?]
— w{ul As? — (Az,2)?] ~ o2},

which yiclds u[||Az]|? — (Az,2)?] > v? and so we have the desired in-
cquality.

The equality holds if and only if |udz —vA"z| = |(udz — vA"z, z)]|.
Equivalently, uAz — vA"z and z are proportional and so the equality
condition follows. This completes the proof. 0

REMARK 5. The equality condition in Lemma can be checked as
follows:

Necessity is trivial by the proof. Since A"z = cx + dAz, a straight-
forward computation shows that both sides of the inequality are equal
to d?[| Az||* — (Az,z)?)? and so sufficiency is proved.
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THEOREM 5. Let A > 0 and let x be a unit vector. Then, for n =
1,2,
(A%z,z) — (Az,z)"
< (|42 - (Az,z)?)2 [| A" 2|)* — (A" 'z, 2)°)2
+ (Az, 2)[(A"tz,2) — (Az, )" 1.
The equality holds if and only if A"~ 'z = cx+dAz for some real numbers
¢ and d.

Proof. The proof is a straightforward application of Lemma as fol-
lows:

(Az,z) — (Az,x)"
= (Az, A" 'z) — (Az,2)(A" '2,2) + (Az, 2)(A" 'z, 2) — (Az, )"
< [ Az]® - (A2, 2)*| 2|47 2l|® — (4" 'z, )2

+ (Az,2)[(A" 'z, 2) — (Az,2)" 1.

The equality holds if and only if

[(Az, A" '2) — (Az,z)(A" 'z, 2)|?
= [|Az|* - (Az,2)*][| A" 2|* — (A" 2, 2)?),

which, in turn, implies that if and only if A" 'z = cx + dAz for some
real numbers ¢ and d by Lemma again. g

REMARK 6. If A > 0and 0 < m < A < M in particular for some
real numbers m and M, then it can be shown from Theorem 5 that
(A"z,z)—(Az,z)™ is bounded by a function of m and M. This result was
precisely obtained in [1, Theorem 2] by the fact that the covariance of A
and A" is bounded by a function of m and M. For further developments
of the variance-covariance inequality, refer to [4].
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