• 제목/요약/키워드: Online mining

검색결과 392건 처리시간 0.025초

스니커헤드 하위문화에 대한 네트노그라피 분석 -하위문화자본 개념을 중심으로- (Exploring Subcultural Capital in Sneakerhead Culture -A Netnographic Investigation-)

  • 김솔휘;임은혁
    • 한국의류학회지
    • /
    • 제47권5호
    • /
    • pp.943-958
    • /
    • 2023
  • This study explores the sneakerhead subculture through the lens of subcultural capital, primarily focusing on online community interactions. The analysis utilizes text mining techniques and netnographic research methods to examine textual data extracted from the online sneakerhead community and aims to elucidate manifestations of subcultural capital within the subculture. The findings underscore several key points: Firstly, shared experiences cultivated by the collective consciousness of subcultural capital foster solidarity among members. Secondly, ongoing validation of authenticity and comprehension of sneakers' cultural significance are member requirements. Subsequently, exhibiting greater levels of subcultural capital empowers members, resulting in hierarchical structures both within and beyond the community. Fourthly, resale-driven sneaker commercialization yields positive outcomes, including individual profit and cultural expansion, yet also brings negative consequences, such as market distortion and intra-community conflict. Lastly, the online community fills a pivotal role in dictating subcultural trends, effectively functioning as an institutional network. Given sneakers' enduring status as a fashion phenomenon, further examination of in this realm is warranted.

텍스트마이닝 기법을 이용한 제 2형 당뇨환자 온라인 담론의 어휘 및 구문구조 분석 (Lexical and Phrasal Analysis of Online Discourse of Type 2 Diabetes Patients based on Text-Mining)

  • 황문현;박정식
    • 디지털융복합연구
    • /
    • 제12권6호
    • /
    • pp.655-667
    • /
    • 2014
  • 본 연구는 질병과 관련한 온라인 포럼에서 추출한 언어 데이터를 통해 제 2형 당뇨병 환자의 질병에 대한 담론을 양적으로 분석하였다. 또한 환자 언어행위의 양적분석을 통해 환자들의 주요 관심사와 심리적 특징의 일반화가 가능한지에 대해 실증적으로 검증하였다. 분석방법으로는 기존의 인터뷰에 기반한 정성적 연구방법론과 달리 환자들의 담론 표본 전체를 파싱 (parsing)과 POS 태깅을 통해 언어학적으로 형태소 분류를 하였다. 주요 어휘빈도 추출과 N-gram을 통한 최빈도 구문구조 분석을 병행하여, 질병과 관련한 이슈의 주요 범주와 심리상태에 관한 언어적인 특징을 살펴보았다. 연구 결과 환자들의 자발적 대화는 주로 다이어트, 운동, 증상, 약물치료, 심리상태의 5가지 범주로 나타나고 있음을 확인하였고, 최빈도 구문구조 분석을 통해 질병치료와 식생활습관 개선 전반에 대한 부정적인 견해가 두드러진 것을 확인하였다. 결과적으로 의료진의 정확한 정보 전달과 전문가의 조언, 정서적 지원 등이 당뇨환자에 대한 심리적 상태에 중요한 만큼 심리치료 서비스이 개선이 필요할 것으로 보인다. 이런한 결과는 기존의 의료제도 안에서의 환자의 관심사와 심리적 특징이 온라인 상에서도 적절하게 투영되고 있음을 시사한다.

빅데이터 기반 시민의견 모니터링 방안 연구 : "경기지역화폐"를 중심으로 (A Study on Monitoring Method of Citizen Opinion based on Big Data : Focused on Gyeonggi Lacal Currency (Gyeonggi Money))

  • 안순재;이새미;유승의
    • 디지털융복합연구
    • /
    • 제18권7호
    • /
    • pp.93-99
    • /
    • 2020
  • 본 연구에서는 비정형적인 대용량의 텍스트 자료로부터 유의미한 정보를 추출하는 빅데이터 분석방법 중 텍스트 마이닝을 이용하여 시행 중인 정책과 제도에 대한 시민의견을 모니터링 할 수 있는지 확인하였다. '경기지역화폐'와 관련된 5,108건의 신문기사와 748건의 온라인 카페글을 수집하여 빈도분석, TF-IDF분석, 연관분석, 워드트리 시각화 분석을 수행하였다. 그 결과로 기사에서는 지역화폐의 도입 목적, 제공되는 혜택, 사용방법에 관련된 내용이 많았고 카페글에서는 지역화폐의 실사용과 관련된 내용 위주로 작성이 되어있음을 확인하였다. 또한 지역화폐 활성화를 위해서 뉴스는 정보전달자로서 지역화폐의 홍보에 관여하고 있었고 카페글은 지역화폐 사용자인 시민들의 의견으로 이루어져 사용과 관련된 실제적인 정보 교환의 장으로 기능하고 있었다. 지역화폐뿐만 아니라 다양한 정책과 제도에 관해서도 SNS와 텍스트 마이닝을 통해 시민들의 의견을 수렴하여 효과적으로 활성화시킬 수 있을 것으로 보인다.

An Exploratory Analysis of Online Discussion of Library and Information Science Professionals in India using Text Mining

  • Garg, Mohit;Kanjilal, Uma
    • Journal of Information Science Theory and Practice
    • /
    • 제10권3호
    • /
    • pp.40-56
    • /
    • 2022
  • This paper aims to implement a topic modeling technique for extracting the topics of online discussions among library professionals in India. Topic modeling is the established text mining technique popularly used for modeling text data from Twitter, Facebook, Yelp, and other social media platforms. The present study modeled the online discussions of Library and Information Science (LIS) professionals posted on Lis Links. The text data of these posts was extracted using a program written in R using the package "rvest." The data was pre-processed to remove blank posts, posts having text in non-English fonts, punctuation, URLs, emails, etc. Topic modeling with the Latent Dirichlet Allocation algorithm was applied to the pre-processed corpus to identify each topic associated with the posts. The frequency analysis of the occurrence of words in the text corpus was calculated. The results found that the most frequent words included: library, information, university, librarian, book, professional, science, research, paper, question, answer, and management. This shows that the LIS professionals actively discussed exams, research, and library operations on the forum of Lis Links. The study categorized the online discussions on Lis Links into ten topics, i.e. "LIS Recruitment," "LIS Issues," "Other Discussion," "LIS Education," "LIS Research," "LIS Exams," "General Information related to Library," "LIS Admission," "Library and Professional Activities," and "Information Communication Technology (ICT)." It was found that the majority of the posts belonged to "LIS Exam," followed by "Other Discussions" and "General Information related to the Library."

An Ensemble Approach for Cyber Bullying Text messages and Images

  • Zarapala Sunitha Bai;Sreelatha Malempati
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.59-66
    • /
    • 2023
  • Text mining (TM) is most widely used to find patterns from various text documents. Cyber-bullying is the term that is used to abuse a person online or offline platform. Nowadays cyber-bullying becomes more dangerous to people who are using social networking sites (SNS). Cyber-bullying is of many types such as text messaging, morphed images, morphed videos, etc. It is a very difficult task to prevent this type of abuse of the person in online SNS. Finding accurate text mining patterns gives better results in detecting cyber-bullying on any platform. Cyber-bullying is developed with the online SNS to send defamatory statements or orally bully other persons or by using the online platform to abuse in front of SNS users. Deep Learning (DL) is one of the significant domains which are used to extract and learn the quality features dynamically from the low-level text inclusions. In this scenario, Convolutional neural networks (CNN) are used for training the text data, images, and videos. CNN is a very powerful approach to training on these types of data and achieved better text classification. In this paper, an Ensemble model is introduced with the integration of Term Frequency (TF)-Inverse document frequency (IDF) and Deep Neural Network (DNN) with advanced feature-extracting techniques to classify the bullying text, images, and videos. The proposed approach also focused on reducing the training time and memory usage which helps the classification improvement.

빅데이터를 활용한 색조화장품의 구매 요인에 관한 연구: 토픽모델링과 Concor 분석을 중심으로 (A Study on the Purchasing Factors of Color Cosmetics Using Big Data: Focusing on Topic Modeling and Concor Analysis)

  • 이은희;배승희
    • 한국응용과학기술학회지
    • /
    • 제40권4호
    • /
    • pp.724-732
    • /
    • 2023
  • 본 연구에서는 코로나 이후 색조화장품 시장의 소비자들의 온라인 관심 정보에 대한 자료 수집을 통하여 색조화장품 정보 검색의 특성과 텍스트 마이닝 분석 결과에 나타난 코로나 이후 색조화장품 시장의 주요 관심정보들을 분석하고자 하였다. 실증분석에서는 "색조화장품" 이라는 단어를 포함하는 뉴스, 블로그, 카페, 웹페이지 등의 모든 문서들을 분석 대상으로 텍스트 마이닝을 수행하였다. 분석 결과 코로나 이후 색조화장품에 대한 온라인 정보 검색은 주로 구매 정보와 피부와 마스크 관련 화장법 등에 관한 정보와 관심 브랜드와 행사 정보 등의 주요 토픽이 주를 이루고 있었다. 결과적으로 코로나 이후 색조화장품 구매자들은 적극적인 온라인 정보 검색을 통하여 제품 가치와 안전성, 가격 혜택, 매장 정보 등의 구매 정보에 더욱 민감하게 될 것이므로 이에 대한 대응전략이 요구된다.

시맨틱 텍스트 마이닝을 위한 온톨로지 활용 방안 (Using Ontologies for Semantic Text Mining)

  • 유은지;김정철;이춘열;김남규
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제21권3호
    • /
    • pp.137-161
    • /
    • 2012
  • The increasing interest in big data analysis using various data mining techniques indicates that many commercial data mining tools now need to be equipped with fundamental text analysis modules. The most essential prerequisite for accurate analysis of text documents is an understanding of the exact semantics of each term in a document. The main difficulties in understanding the exact semantics of terms are mainly attributable to homonym and synonym problems, which is a traditional problem in the natural language processing field. Some major text mining tools provide a thesaurus to solve these problems, but a thesaurus cannot be used to resolve complex synonym problems. Furthermore, the use of a thesaurus is irrelevant to the issue of homonym problems and hence cannot solve them. In this paper, we propose a semantic text mining methodology that uses ontologies to improve the quality of text mining results by resolving the semantic ambiguity caused by homonym and synonym problems. We evaluate the practical applicability of the proposed methodology by performing a classification analysis to predict customer churn using real transactional data and Q&A articles from the "S" online shopping mall in Korea. The experiments revealed that the prediction model produced by our proposed semantic text mining method outperformed the model produced by traditional text mining in terms of prediction accuracy such as the response, captured response, and lift.

IRT와 데이터 마이닝을 이용한 효과적인 평가 및 추천시스템 (Efficient Assessment and Recommendations System using IRT and Data Mining)

  • 김천식;정명희
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.109-117
    • /
    • 2006
  • 이러닝 교육 방법은 오프라인 교육의 단점을 보완하는 많은 장점을 갖고 있다. 이와 같은 이유로, 기존의 많은 오프라인 교육기관은 학습효과를 높일 목적으로 온라인 기술을 현장에 도입하였다. 최근의 일반 대학교에서도 온라인 학습을 부분적으로 도입하고 있다. 그 결과 기존의 오프라인 교육의 장점을 온라인 교육에 도입하여 교육의 효과를 높일 수 있는 방법에 대한 연구를 진행하고 있다. 그 결과 온라인에서 학습 효과를 높이기 위해서 학습자를 적절히 평가하고 적절한 피드백을 제공하는 것이 필요하게 되었다. 따라서. 본 논문에서는 오프라인의 장점을 온라인에 도입하여 학습 능률을 향상시킬 수 있는 모델을 제안하고자 한다. 제안한 모델의 핵심은 올바른 평가에 있다. 그러므로, 학생들을 위한 정확한 평가를 위해서 문항반응검사를 실시하여 학습자를 평가하고 수준별 학습을 할 수 있도록 하였다. 또한, 온라인에서 학생의 학습 스타일을 알아내어 각 학생의 잘못된 학습 성향을 개선하게 하여 학습의 효과를 높이도록 하는 방법을 제안하였다. 향후 본 논문에서 제안 방법이 현장에서 활용된다면 학습자의 학업능력 개선에 도움이 될 것으로 기대한다.

  • PDF

텍스트 마이닝을 활용한 온라인 교육에 대한 소비자 인식 변화 분석: COVID-19 전후를 중심으로 (A Study on Consumer perception changes of online education before and after COVID-19 using text mining)

  • 손민성;임미자;박경환
    • 디지털융복합연구
    • /
    • 제19권1호
    • /
    • pp.29-43
    • /
    • 2021
  • COVID-19 이후 국내는 물론, 전 세계적으로 온라인 교육은 절대적으로 필요하며 대체 불가한 교육 형태가 되었다. 온라인 교육이 급부상 하면서 교육 형태에 대해 사람들이 가지는 인식은 어떠한지, 만약 변화가 있다면 어떻게 변화했는지는 매우 궁금증을 자아내는 질문이다. 본 연구는 온라인 교육에 대한 소비자 인식의 변화 추이를 빅데이터를 활용하여 조사하였다. 이를 위해 코로나 이전(2019년 11월-12월), 코로나 촉발 이후(2020년 1월-2월), 온라인 개강직후(2020년 3월-4월), 온라인 교육을 일정 정도 경험한 이후(2020년 5월-6월)의 4개의 구간으로 구분하고, 텍스트 마이닝 즉, 키워드 빈도분석, 워드클라우드 분석, 네트워크 분석, 감성 분석을 수행하였다. 시기별로 온라인 교육 관련 키워드의 출현빈도는 코로나 이전에는 학점은행제, 평생교육, 블로그 등에서 코로나 이후 학교 개강이 시작되면서 온라인 개학, 비대면 교육, 실시간, 콘텐츠 제작, 유튜브 등으로 변화하였다. 감성분석 결과, 코로나 사태 이전에는 공지안내, 정보교류 등의 중립글이 대부분이었으나, 코로나 발생을 계기로 온라인 교육에 대한 사람들의 인식과 평가에 대한 긍정 및 부정의 의견이 논의되기 시작하였다. 또한 미래 온라인 교육시장의 확산과 전망 등 방향성에 대해서도 관심이 증대되었다. 온라인 교육은 발전가능성이 높은 만큼 앞으로 개선해야 할 부분들이 많겠으나, 교육 정책입안자, 현장에서 일하는 교육자들에게 온라인 교육 품질 개선 및 향후 나아갈 방향 수립에 도움을 줄 수 있을 것이다.

Applications of the Text Mining Approach to Online Financial Information

  • Hansol Lee;Juyoung Kang;Sangun Park
    • Asia pacific journal of information systems
    • /
    • 제32권4호
    • /
    • pp.770-802
    • /
    • 2022
  • With the development of deep learning techniques, text mining is producing breakthrough performance improvements, promising future applications, and practical use cases across many fields. Likewise, even though several attempts have been made in the field of financial information, few cases apply the current technological trends. Recently, companies and government agencies have attempted to conduct research and apply text mining in the field of financial information. First, in this study, we investigate various works using text mining to show what studies have been conducted in the financial sector. Second, to broaden the view of financial application, we provide a description of several text mining techniques that can be used in the field of financial information and summarize various paradigms in which these technologies can be applied. Third, we also provide practical cases for applying the latest text mining techniques in the field of financial information to provide more tangible guidance for those who will use text mining techniques in finance. Lastly, we propose potential future research topics in the field of financial information and present the research methods and utilization plans. This study can motivate researchers studying financial issues to use text mining techniques to gain new insights and improve their work from the rich information hidden in text data.