• Title/Summary/Keyword: OneNAND

Search Result 48, Processing Time 0.028 seconds

Nanoscale NAND SONOS memory devices including a Seperated double-gate FinFET structure

  • Kim, Hyun-Joo;Kim, Kyeong-Rok;Kwack, Kae-Dal
    • Journal of Applied Reliability
    • /
    • v.10 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • NAND-type SONOS with a separated double-gate FinFET structure (SDF-Fin SONOS) flash memory devices are proposed to reduce the unit cell size of the memory device and increase the memory density in comparison with conventional non volatile memory devices. The proposed memory device consists of a pair of control gates separated along the direction of the Fin width. There are two unique alternative technologies in this study. One is a channel doping method and the other is an oxide thickness variation method, which are used to operate the SDF-Fin SONOS memory device as two-bit. The fabrication processes and the device characteristics are simulated by using technology comuter-adided(TCAD). The simulation results indicate that the charge trap probability depends on the different channel doping concentration and the tunneling oxide thickness. The proposed SDG-Fin SONOS memory devices hold promise for potential application.

Program Cache Busy Time Control Method for Reducing Peak Current Consumption of NAND Flash Memory in SSD Applications

  • Park, Se-Chun;Kim, You-Sung;Cho, Ho-Youb;Choi, Sung-Dae;Yoon, Mi-Sun;Kim, Tae-Yun;Park, Kun-Woo;Park, Jongsun;Kim, Soo-Won
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.876-879
    • /
    • 2014
  • In current NAND flash design, one of the most challenging issues is reducing peak current consumption (peak ICC), as it leads to peak power drop, which can cause malfunctions in NAND flash memory. This paper presents an efficient approach for reducing the peak ICC of the cache program in NAND flash memory - namely, a program Cache Busy Time (tPCBSY) control method. The proposed tPCBSY control method is based on the interesting observation that the array program current (ICC2) is mainly decided by the bit-line bias condition. In the proposed approach, when peak ICC2 becomes larger than a threshold value, which is determined by a cache loop number, cache data cannot be loaded to the cache buffer (CB). On the other hand, when peak ICC2 is smaller than the threshold level, cache data can be loaded to the CB. As a result, the peak ICC of the cache program is reduced by 32% at the least significant bit page and by 15% at the most significant bit page. In addition, the program throughput reaches 20 MB/s in multiplane cache program operation, without restrictions caused by a drop in peak power due to cache program operations in a solid-state drive.

A method for optimizing lifetime prediction of a storage device using the frequency of occurrence of defects in NAND flash memory (낸드 플래시 메모리의 불량 발생빈도를 이용한 저장장치의 수명 예측 최적화 방법)

  • Lee, Hyun-Seob
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.4
    • /
    • pp.9-14
    • /
    • 2021
  • In computing systems that require high reliability, the method of predicting the lifetime of a storage device is one of the important factors for system management because it can maximize usability as well as data protection. The life of a solid state drive (SSD) that has recently been used as a storage device in several storage systems is linked to the life of the NAND flash memory that constitutes it. Therefore, in a storage system configured using an SSD, a method of accurately and efficiently predicting the lifespan of a NAND flash memory is required. In this paper, a method for optimizing the lifetime prediction of a flash memory-based storage device using the frequency of NAND flash memory failure is proposed. For this, we design a cost matrix to collect the frequency of defects that occur when processing data in units of Drive Writes Per Day (DWPD). In addition, a method of predicting the remaining cost to the slope where the life-long finish occurs using the Gradient Descent method is proposed. Finally, we proved the excellence of the proposed idea when any defect occurs with simulation.

An Algorithm for One-Dimensional MOS-LSI Gate Array (1차원 MOS-LSI 게이트 배열 알고리즘)

  • 조중회;정정화
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.13-16
    • /
    • 1984
  • This paper proposes a new layout algorithm in order to minimize chip area in one dimensional MOS - LSI composed of basic cells, such as NAND or NOR gates. The virtval gates are constructed, which represent I/O of signal lines at the left-most and at the right-most side of the MCS gate array. With this, a heuristic algorithm is realized that can minimize the number of straight connectors passing through each gate, and as the result, minimize the horizontal tracks necessary to route. The usefulness of the algorithm proposed is shown by the execution of the experimental program on practical logic circuits.

  • PDF

Low Cost Endurance Test-pattern Generation for Multi-level Cell Flash Memory

  • Cha, Jaewon;Cho, Keewon;Yu, Seunggeon;Kang, Sungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.147-155
    • /
    • 2017
  • A new endurance test-pattern generation on NAND-flash memory is proposed to improve test cost. We mainly focus on the correlation between the data-pattern and the device error-rate during endurance testing. The novelty is the development of testing method using quasi-random pattern based on device architectures in order to increase the test efficiency during time-consuming endurance testing. It has been proven by the experiments using the commercial 32 nm NAND flash-memory. Using the proposed method, the error-rate increases up to 18.6% compared to that of the conventional method which uses pseudo-random pattern. Endurance testing time using the proposed quasi-random pattern is faster than that of using the conventional pseudo-random pattern since it is possible to reach the target error rate quickly using the proposed one. Accordingly, the proposed method provides more low-cost testing solutions compared to the previous pseudo-random testing patterns.

Characterizing the Tail Distribution of Android IO Workload (안드로이드 입출력 부하의 꼬리분포 특성분석)

  • Park, Changhyun;Won, Youjip;Park, Yongjun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.10
    • /
    • pp.245-250
    • /
    • 2019
  • The use of NAND flash memory has increased rapidly due to the development of mobile fields. However, NAND flash memory has a limited lifespan, so studies are underway to predict its lifespan. Workload is one of the factors that significantly affect the life of NAND flash memory, and workload analysis studies in mobile environments are insufficient. In this paper, we analyze the distribution of workload in the mobile environment by collecting traces generated by using Android-based smartphones. The collected traces can be divided into three groups of hotness. Also they are distributed in the form of heavy tails. We fit this to the Pareto, Lognormal, and Weibull distributions, and Traces are closest to the Pareto distribution.

Abnormal Detection in 3D-NAND Dielectrics Deposition Equipment Using Photo Diagnostic Sensor

  • Kang, Dae Won;Baek, Jae Keun;Hong, Sang Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.74-84
    • /
    • 2022
  • As the semiconductor industry develops, the difficulty of newly required process technology becomes difficult, and the importance of production yield and product reliability increases. As an effort to minimize yield loss in the manufacturing process, interests in the process defect process for facility diagnosis and defect identification are continuously increasing. This research observed the plasma condition changes in the multi oxide/nitride layer deposition (MOLD) process, which is one of the 3D-NAND manufacturing processes through optical emission spectroscopy (OES) and monitored the result of whether the change in plasma characteristics generated in repeated deposition of oxide film and nitride film could directly affect the film. Based on these results, it was confirmed that if a change over a certain period occurs, a change in the plasma characteristics was detected. The change may affect the quality of oxide film, such as the film thickness as well as the interfacial surface roughness when the oxide and nitride thin film deposited by plasma enhenced chemical vapor deposition (PECVD) method.

Design and Performance Evaluation of a Flash Compression Layer for NAND-type Flash Memory Systems (NAND형 플래시메모리를 위한 플래시 압축 계층의 설계 및 성능평가)

  • Yim Keun Soo;Bahn Hyokyung;Koh Kern
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.4
    • /
    • pp.177-185
    • /
    • 2005
  • NAND-type flash memory is becoming increasingly popular as a large data storage for mobile computing devices. Since flash memory is an order of magnitude more expensive than magnetic disks, data compression can be effectively used in managing flash memory based storage systems. However, compressed data management in NAND-type flash memory is challenging because it supports only page-based I/Os. For example, when the size of compressed data is smaller than the page size. internal fragmentation occurs and this degrades the effectiveness of compression seriously. In this paper, we present an efficient flash compression layer (FCL) for NAND-type flash memory which stores several small compressed pages into one physical page by using a write buffer Based on prototype implementation and simulation studies, we show that the proposed scheme offers the storage of flash memory more than $140\%$ of its original size and expands the write bandwidth significantly.

A High-Speed Voltage-Controlled Ring-Oscillator using a Frequency Doubling Technique (주파수 배가 방법을 이용한 고속 전압 제어 링 발진기)

  • Lee, Seok-Hun;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.25-34
    • /
    • 2010
  • This paper proposed a high-speed voltage-controlled ring-oscillator(VCRO) using a frequency doubling technique. The design of the proposed oscillator has been based on TSMC 0.18um 1.8V CMOS technology. The frequency doubling technique is achieved by AND-OR operations with 4 signals which have $90^{\circ}$ phase difference one another in one cycle. The proposed technique has been implemented using a 4-stage differential oscillator compose of differential latched inverters and NAND gates for AND and OR operations. The differential ring-oscillator can generate 4 output signals, which are $90^{\circ}$ out-of-phase one another, with low phase noise. The ANP-OR operations needed in the proposed technique are implemented using NAND gates, which is more area-efficient and provides faster switching speed than using NOR gates. Simulation results show that the proposed, VCRO operates in the frequency range of 3.72 GHz to 8 GHz with power consumption of 4.7mW at 4GHz and phase noise of ~-86.79dBc/Hz at 1MHz offset. Therefore, the proposed oscillator demonstrates superior performance compared with previous high-speed voltage-controlled ring-oscillators and can be used to build high-performance frequency synthesizers and phase-locked loops for radio-frequency applications.

A Study on Write Cache Policy using a Flash Memory (플래시 메모리를 사용한 쓰기 캐시 정책 연구)

  • Kim, Young-Jin;Anggorosesar, Aldhino;Lee, Jeong-Bae;Rim, Kee-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.77-78
    • /
    • 2009
  • In this paper, we study a pattern-aware write cache policy using a NAND flash memory in disk-based mobile storage systems. Our work is designed to face a mix of a number of sequential accesses and fewer non-sequential ones in mobile storage systems by redirecting the latter to a NAND flash memory and the former to a disk. Experimental results show that our policy improves the overall I/O performance by reducing the overhead significantly from a non-volatile cache over a traditional one.