• Title/Summary/Keyword: One-Dimensional

Search Result 6,790, Processing Time 0.031 seconds

Projectivity for 3-Dimensional Compact Nonsingular Toric Varieties

  • Park, Hye Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.6 no.1
    • /
    • pp.95-104
    • /
    • 1993
  • There are some sufficient or necessary conditions about projectivity for toric varieties. We consider one of them and state some conditions about projectivity for a 3-dimensional compact nonsingular case which is obtained from a projective one by nonsingular equivariant blow-down.

  • PDF

Performance Simulation of One-Dimensional Ice Storage Tank Model for Refrigeration System Using Night Electricity (심야전력이용 냉방시스템용 캡슐형 빙축열조에 대한 1차원 모델 축방냉 성능 시뮬레이션)

  • 이경호;주용진;최병윤
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.193-196
    • /
    • 1999
  • This paper describes one dimensional transient modeling of encapsulated ice storage tank and its experimental validation. This model simulates the performance of tile tank for charge and discharge process with brine mass flow operating conditions.

  • PDF

Development of Centrifugal Compressors in an 1.2MW Industrial Gas Turbine(I)-Aerodynamic Design and Analysis- (1.2MW급 산업용 가스터빈 원심압축기 개발(1)- 공력설계해석 -)

  • Jo, Gyu-Sik;Lee, Heon-Seok;Son, Jeong-Rak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2707-2720
    • /
    • 1996
  • The aerodynamic design of the two-stages of centrifugal compressors in an 1.2MW industrial gas turbine is completed with the application of numerical analyses. The final shape of an intake, the axial guide vanes and a return channel is determined using several interactions between design and two-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional design and prediction of aerodynamic performances for the compressors are performed by two different methods; one is a method with conventional loss models, and the other a method with the two-zone model. The combination methods of the Betzier curves generate three-dimensional geometric shapes of impeller blades which are to be checked with a careful change of aerodynamic blade loadings. The impeller design is finally completed by the applications of three-dimensional compressible turbulent flow solvers, and the effect of minor change of design of the second-stage channel diffuser is also studied. All the aerodynamic design results are soon to the verified by component performance tests of prototype centrifugal compressors.

A One-dimensional Annular Plate Element for In-plane Vibration Analysis of Full Disks (충만 디스크의 면내 진동 해석을 위한 1차원 환상 평판 요소)

  • Kwak, Dong-Hee;Lim, Jung-Ki;Kim, Chang-Boo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1338-1346
    • /
    • 2009
  • We present a one-dimensional annular plate element with which the in-plane vibration of full disks can be analyzed efficiently and accurately by using the FEM. Its elementary mass matrix and stiffness matrix are derived, respectively, from the virtual work by effective forces and the virtual strain energy. The static deformation modes obtained from an integration of the differential equilibrium equations of the annular plate are used as interpolation functions of the one-dimensional annular plate element. The in-plane natural vibration characteristics of a 2-step full disk and a uniform full disk are analysed. Its results are compared with the results obtained by utilizing two-dimensional 8-node quadrilateral plane elements and cyclic symmetry of the disk. And also, by comparing with the theoretical results of previous researchers, the efficiency and accuracy of the presented element are verified.

Current Conservation Factors for Consistent One-Dimensional Neutronics Modeling

  • Lee, Kibog;Joo, Han-Gyu;Cho, Byung-Oh;Zee, Sung-Quun
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.235-243
    • /
    • 2000
  • A one-dimensional neutronics formulation is established within the framework of the nonlinear analytic nodal method such that it can result in consistent one-dimensional models that produce the same axial information as their corresponding reference three-dimension81 models. Consistency is achieved by conserving axial interface currents as well as the planar reaction rates of the three-dimensional case. For current conservation, flux discontinuity is introduced in the solution of the two-node problem. The degree of discontinuity, named the current conservation factor, is determined such that the surface averaged axial current of the reference three-dimensional case can be retrieved from the two-node calculation involving the radially collapsed group constants and the discontinuity factor. The current conservation factors are derived from the analytic nodal method and various core configurations are analyzed to show that the errors in K-eff and power distributions can be reduced by a order of magnitude by the use of the current conservation factor with no significant computational overhead.

  • PDF

Analysis on Two Parallel Flows in Convergent Channel (축소 유로내의 두 평행 유동에 대한 해석)

  • Kwon, Jin-Kyung;Kim, Tae-Wook;Kim, Jin-Hyun;Kim, Jae-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Compound flow by confluence of two parallel flows through a convergent channel and its choking phenomenon are calculated by one-dimensional isentropic model and completely mixing model. Optical observations and pressure measurements for subsonic/subsonic compound flows are carried out and compared with the results of one-dimensional calculations. As a result, it is found that inlet conditions of one flow influence the behavior of the other flow as well as the choking condition and present experimental data agree well with the results of one-dimensional calculations.

One-dimensional consolidation with asymmetrical exponential drainage boundary

  • Mei, Guo-Xiong;Lok, Thomas M.H.;Xia, Jun;Wu, Sheng Shen
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.47-63
    • /
    • 2014
  • In this paper, asymmetric drainage boundaries modeled by exponential functions which can simulate intermediate drainage from pervious to impervious boundary is proposed for the one-dimensional consolidation problem, and the solution for the new boundary conditions was derived. The new boundary conditions satisfy the initial and the steady state conditions, and the solution for the new boundary conditions can be degraded to the conventional solution by Terzaghi. Convergence study on the infinite series solution showed that only one term in the series is needed to meet the precision requirement for larger degree of consolidation, and that more terms in the series for smaller degree of consolidation. Comparisons between the present solution with those by Terzaghi and Gray are also provided.