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ABSTRACT

We present a new integer programming formulation and a class of valid inequalities for solving the
one-dimensional facility layout problem, which leads to a very efficient solution method for the
problem.
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1. Introduction

The one-dimensional facility location problem (ODFLP) is defined as follows. We are

given n departments, each of which has a length [, for all ie N, where N =({1, 2,
.-+, n}. Also there is given an nxn symmetric matrix C = [ci].], where ¢ is the ave-

rage daily traffic requirement between two departments i and j. The problem appears
in applications such as room arrangement problem on a corridor in building in hospi-
tals and supermarkets, see [10]. Also, there are other applications of the problem, for
example, the arrangement of books in a shelf [9] and the machine layout problem [6].
ODFLP is very similar to the linear ordering problem [4], except that the objec-
tive function is quadratic in this case. The problem is known to be NP-hard [1], so
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most previous research has focused on developing approximate solution methods, for
example, see [6], [7], and [2]. Recently, Amaral [1] proposed an exact approach to the
problem using an IP formulation. The computational results reported there show that
it can solve the test problems found in various literatures to the optimality. However,
the proposed formulation needs too many branch-and-bound nodes with long com-
putational time for rather large sized problem instances, which indicates that it might
not be easily applied for solving large-sized problem instances. The formulation uses
traditional formulation for the linear ordering problem together with linearization of

quadratic variables which are needed to represent the distances between pairs of de-
partments. The linearized formulation requires O(n*) variables.

In this paper, we propose a new formulation for (ODFLP) which also requires
O(n*) variables. The formulation uses three-index variables each of which represents

a partial ordering among three distinct departments. The proposed formulation is
shown to yield a stronger LP relaxation than that in [1]. Also the LP relaxation of the
proposed formulation, together with a set of strong valid inequalities, can provide
optimal solutions to all the benchmark problems in [1] within a very short computa-
tional time, which is a very interesting result. Hence it can be served as a very prom-
ising tool to resolve large-sized problem instances found in practice. In addition, the
proposed formulation gives an alternative formulation for the linear ordering prob-
lem. Though the number of variables and constraints are larger than the traditional
formulation, it can yield a stronger LP relaxation. Hence the results can also be used
to develop an alternative efficient solution approach to the linear ordering problem.
In the next section, we will present the new formulation and compare it with the
formulation presented in [1]. In section 3, a class of strong valid inequalities is pre-
sented, which is used to further strengthen the formulation. In section 4, computa-

tional results are reported which is followed by the concluding remarks.

2. Formulation

Before presenting the formulation, for the convenience of exposition, let us define the
relation i< j, for two distinct pair i,je N. The relation i < j means that department

i is located at the left of department j. Note that < defines a partial ordering between
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a pair of departments. Also without loss of generality, we will assume 72> 4.

As presented in section 1, ODFLP seeks to find a linear arrangement (that is, a
complete linear ordering) of n departments which minimizes the sum of average
daily traffic weighted distances between all pairs of departments. More precisely, for

a given linear arrangement, let d(i, j) be the distance between the pair of depart-
ments i and j. Then if i<j in the given linear arrangement, d(i, j)=%(li+ L)+

st N\ R,H]_lk, where the distance is measured between the centroid of departments

i and j. So the objective function is to minimize Zi’iEN‘iqcijd(i, 7).
To present the new formulation, let us begin with the formulation given in

Amaral [1]. Let us define binary variable a; =1 if i<j and &, =0 otherwise. Then

the distance between the pair of departments i and j, where i< j, can be represented

as follows [1].

a1
d(l’])za(li-i-lj)_ > Loyo + > Lo, — ) Logo + )y Loy

ke N\[i,j} keN\{i,j} keN\{i,j} ke N\{i,j}

Using the above result, Amaral [1] presented the following IP formulation for
(ODEFLP):

(IPA)
. 1
min 12 Ecil.(l,.+li) + 2 ol Z”lkajk— > LW,
<i<jgn 1<i<j<n ke NA(i,j) keN\{i,j}
* Z l t}lk Z Z wk]k) (1)
ke N\{i,j} ke N\{i,f}
st g +a, W,,k <1, ka < V\fwk <ay, for all distinct 7, j, ke N, (2)

@, +a,-W, <1, W,<e, W, <a,, foraldistnct i,jkeN, (3)

ifi ifi

o +oy -Wy, <1, Wy, <o, Wy, <a,, foralldistinct i,j, ke N, (4
o +a, =1, forall 1<i<j<n, (5)
o +o, +a,; <2, for all distinct i, j, ke N, (6)

o, €{0,1}, forall 1<i<j<n, (7)
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In the above formulation (IPA), the variables such as W, are introduced to lin-

earize the quadratic terms such as ¢ &, , which are reflected in the constraints (2), (3),

ik

and (4). The constraints (5) and (6) ensure that the variables ¢, for all 1<i<j<n,

define a complete ordering among all the departments.
By using the equation (5) and complementing the variables as necessary (for ex-

ample, by replacing W, =a,¢,

(0 = (1-a)o, =a, ~W,, ) and also by representing

the variables such as W, = x,,, the formulation (IPA) can be restated as follows:

(IPA")
> %ci}.(li+l/.)+ Do > hx+ Y Lx) (8)

I<i<j<n 1<i<j<n keN\{i,j} keN\(i,j}

for all distinct 7, j, ke N, &)

min

s.t a; +0, —x, <1, Xk <@, Xy < o,

o, to; = 1,
+a, +a; <2,
a,€{0,1},

x; €{0, 1},

forall 1<i<j<n,
for all distinct i, j, ke N,
forall 1<i<j<n,

for all distinct i, j, ke N.

(10)

Note that if x,, =a,a, =1 then it defines a partial ordering among the depart-

ments i, j, and ksuch as i< jand j<k for three distinct i, j, ke N. The set of constra-

ints (9) replaces the sets of constraints (2)~(4).

Now we will introduce two sets of equations which should be satisfied by the
variables X for all distinct i, j, ke N. The first equation states that there should be
only one partial ordering among three distinct departments i, j, ke N, which can be
represented as follows:

Xy Xy X + X X X, = 1, for all distinct i, j, ke N. (11)

The second equation states that exactly one of the relations i < jand j<i should

hold for each pair of departments i and j, which can be represented as follows:
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X T Xy X ¥ X 2, X, = 1,

for all distinct i, j, k,le N, where i<j and k=l (12)

Next we will show that the equations (11) and (12), together with the integrality
constraints (10) are sufficient for the formulation of the problem (ODFLP). Let us call
it (IP1), which is presented as follows:

(IpP1)
. 1
min > =c, (L +1)+ > ¢, ( Z Ly + Z lx;)
1<icn 2 1<ici<n  keNVIL)) kNN j)
st X+ Xt X, +X +x, +x, =1, foralldistinct i, j, ke N,

xijk + xik/' + xkij + xjil + lei + ‘xlji = 1’

for all distinct i, j, k,le N, where i<j and k=l

Xy € {0, 1}, for all distinct i, j, ke N.
To prove the result, we need the following lemma.

Lemma 1: For a given pair i, je N, the following equation is implied by the sets of

equations (11) and (12);
X+ Xy + X =X, +x, +x,, forall k#1, k,le N\{i, j}. (13)

Proof: Suppose the equation (13) does not hold. Without loss of generality, we can

assume X, +X;, +X,; > X, +x, +x,. Then we can get x, +x, +x, >1—-(x; +

X; +x,;) by using the equation (11). It can be rearranged as x,, +x,, +x,; +x,

+x;; +x;; > 1. Hence by the equation (12), this leads to a contradiction.

Note that the above lemma 1 holds for the LP relaxation of (IP1).

Since the equation (13) holds, for any given feasible solution to (IP1), we can de-
fine the following equation unambiguously:
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O =Xy X + 2y, for all distinct i, je N and forany ke N\{i, j}. (14)

Then we can prove the following lemma.

Lemma 2: The o, for all distinct i, je N, defined in (14) satisfies the constraints (5)

and (6).

Proof: By using the equation (12), it is trivial to show that the constraint (5) holds.
Hence we only need to consider the constraint (6). By using the relation (14),
we can get the following equations:

ki 7

@ =X T Xy T Xyr O = X ¥ X5 X5, &y =X+ X, X

By summing the above equations and also by using the equation (11), we can get

o toy oy = 1+ X+ Xy + Xy <2.

This completes the proof.
Note also that the above lemma 2 holds for the LP relaxation of (IP1).
Hence we can derive a complete ordering from any feasible solution of (IP1),

which shows that the formulation (IP1) is correct.
Theorem 1: The formulation (IP1) is correct.

Moreover, we can show that (IP1) gives a stronger LP relaxation than (IPA).
Theorem 2: The LP relaxation of (IP1) is stronger than the LP rela;xation of (IPA).
Proof: In the above, we showed that (IPA) can be rewritten as (IPA’). Thus, it is suffi-

cient to show that the LP relaxation of (IP1) is stronger than the LP relaxation

of (IPA’). Note that in the proof of Lemma 2, we already show that the con-
straints (5) and (6) are satisfied if we define the variable a; as (14). Also it is
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easy to show that the constraint (9) is satisfied by noting that ¢, +a; —x, =

(3 2 F X )+ (X + X5 X )= X = X + X X 0, X, ST So the feasi-
ble set of the LP relaxation of (IP1) is contained in that of (IPA’). Now consider

the following feasible solution to the LP relaxation of (IPA”):

o, = 0.5,forall 1<i<j<n; and Xk =0.5, for all distinct i, j, ke N.

The above solution is infeasible to the LP relaxation of (IP1). So the result follows.

We want to mention that Amaral [1] presented some classes of strong valid ine-
qualities which are appended to the formulation (IPA). A further comparison of the
strength of the LP relaxations for the strengthened formulation with the valid ine-
qualities is left as a further study. Rather, we only mention that the computational
study given in section 4 shows that the strengthened formulation produces the same
LP bounds to all the test problems as (IP1).

3. A Class of Strong Valid Inequalities

To derive a valid inequality, consider a partial ordering i< j =<k which means
x; =1 foradistinct i, j, ke N. Assume the reverse ordering which means k< j<i.

Now let us choose e N\{i, j, k}. Then there are four possible positions which / can

choose as presented in Figure 1.

Figure 1. Four Possible Locations of 1

From Figure 1, we can derive four variables Xyir Xgir Xiio and Xjis each of which

Kijr i
is incompatible with the others. Also, each of the four variables is incompatible with

the variable x,,. Hence we can prove that the following theorem holds:
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Theorem 3: The following inequality is valid for (IP1):

xijk + xlkj + xklj

+Xy X, < 1, forall distinct i, j, k,le N (15)
We can show that the above inequality (15) can cut some fractional solutions to

the LP relaxation of (IP1). Consider the following point:

=05 (16)

It can be easily verified that the point (16) satisfies all the constraints of the LP re-
laxation of (IP1). However, the point can be removed by adding the inequality (15).
Hence, we can conclude that the inequality (15), if appended to (IP1), can strengthen
the formulation. Let us denote the strengthened formulation as (IP2).

An alternative way to derive the valid inequality (15) is to view (IP1) as a node
packing problem [8]. Specifically, if we relax the equality constraints (11) and (12) to
inequality, then the problem reduces to a node packing problem. One can show that
the inequality (15) corresponds to a maximal clique inequality which is known to de-
fine a facet for the node packing polytope. We can show that there are many other
valid inequalities that can be derived in a similar manner, but the results are omitted

here.

4. Computational Results

To evaluate the performance of the new formulations (IP1) and (IP2), we used the
same problem instances given in [1] and a larger problem instance (denoted as P20 in
table 1) which can be found in [6]. The sizes of the problem instances are 4 <n<20.
The following Table 1 shows the computational results.

In Table 1, the results shown under the title of Amaral were replicated from the
paper [1], where (MIP3) is a strengthened version of (IPA) with some valid inequali-
ties added which are given there. Though the test environment such as microproces-
sors and CPLEX versions is somewhat different, we can draw some interesting obser-

vations.
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Table 1. Computational Results

Amaral (MIP3) and B&B (IP1) (Ir2)
Name B&B s I
LP Opt. Nodes Time’ LP Opt. Time LP Time

P4 570 638 2 0.02 570 638 0.01 638 0.01
LW5 135 151 2 0.05 135 151 0.01 151 0.00
S8 611 801 22 1.25 611 801 0.31 801 0.22
S8H | 21145 23245 12 0.81| 21145 23245 022 | 23245 0.42
59 19525  2469.5 32 3.27 | 19525  2469.5 0.86 | 2469.5 0.31
S9H | 44045 4695.5 46 236 | 44045  4695.5 1.05 | 46955 0.91
S10 | 20105 27815 56 7.92 | 20105 27815 1.89 | 27815 0.78
S11 51535 69335 111 19.19 | 5153.5 69335 5.06 { 6933.5 2.45
LW11 | 5153.5 6933.5 58 17.55 | 5153.5 6933.5 5| 69335 241
P15 3583 63055 1759 1267 | 3583 63055 171.5| 6305.5 63.7
P17 5119 9254 3369 5446 | 5119 9254 6923 9254 181.79
P18 | 57745 10650.5 7515 20396 | 57745 106505 1523.1 | 10650.5 536.09
P20 - - - - 8113 15549 2561.2 15549 1808.22

Note *P41.6GHz, CPLEX 8.0.
™ P4 3.0GHz, CPLEX 10.0.

Firstly, the new formulation (IP1) gives the same LP bounds as [1] for all the test
problem instances. Though we did not thoroughly compare the strengths of the two
formulations, the results show that LP relaxation bound of (IP1) is as good as Amaral’s
[1] at least for the test problem instances.

Secondly, the LP relaxation of formulation (IP2) produces optimal integer solu-
tions to all the test problem instances with no branch-and-bound nodes needed. The
results are very interesting when considering the formulation given in [1] requires
many branch-and-bound nodes. Also note that the computation time is much smaller.
Hence we can conclude that the newly proposed formulation (IP2) has a potential to
solve larger-sized problem instances in an efficient manner. Note that the problem
instance P20 which is not considered in [1] also has been solved by only using the LP
relaxation.

For some large problem instances, the size of (IP2) would be somewhat large.
However, in this case, we can use the branch-and-price-and-cut approach which can

handle large-sized formulations very efficiently, see [3].
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5. Concluding Remarks

This paper presents a new formulation for the one-dimensional facility layout prob-
lem. The formulation has some interesting theoretical property and more importantly,
it can solve all the test problems only by solving LP relaxation of it. Hence it can be
used to solve large-sized problem instances which may be found in practice. In a
theoretical aspect, the proposed formulation can be viewed as an alternative ap-
proach to formulate the linear ordering problem [4]. It would be very interesting to
thoroughly analyze the formulation and compare it with the traditional formulation,

which is left as a further research topic.
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